

MITIGATED DETERMINATION OF NON-SIGNIFICANCE Littlerock Mixed Use Permit No. TUM-22-0189 December 8, 2023

<u>Description of Proposal</u>: The applicant is proposing a mixed-use commercial (3,811sf)/residential (114 units) development with associated open space, parking, landscaping and infrastructure.

Applicant: MCS-Littlerock, LLC, 7908 Sweet Iron Court SE, Tumwater, WA, 98501.

<u>Representative</u>: Brandon Johnson, PE – JSA Civil, LLC; 111 Tumwater Blvd, SE, Suite C210, Tumwater, WA 98501

Location of Proposal: 5945 Littlerock Road SW, Tumwater, WA 98512 and adjacent unaddressed lot. Tax Parcel Numbers: 1270321600 and 12703220700.

Lead agency: City of Tumwater, Community Development Department.

The lead agency for this proposal has determined that, as conditioned, does not have a probable significant adverse impact on the environment. An Environmental Impact Statement (EIS) is not required under RCW 43.21C.030(2)(c). This decision was made after review of a completed environmental checklist and other information on file with the lead-agency. This information is available to the public on request.

This MDNS assumes that the applicant will comply with all City ordinances and development standards governing the type of development proposed, including but not limited to, street standards, storm water standards, high groundwater hazard areas ordinance standards, water and sewer utility standards, critical areas ordinance standards, tree protection standards, zoning ordinance standards, land division ordinance standards, building and fire code standards, and level of service standards relating to traffic. These ordinances and standards provide mitigation for adverse environmental impacts of the proposed development.

<u>Condition of Approval for mitigating environmental impacts</u>: <u>Findings:</u>

- 1. The Tumwater Boulevard/I-5 northbound ramps intersection currently operates at LOS F during both peak periods for the northbound left-turn movement. The project is projected to add one hundred seventy-seven trips to this intersection. The City has recently developed a SEPA improvement project for the Tumwater Boulevard/I-5 interchange that include intersection improvements at the northbound I-5 ramps intersection, with a peak hour per trip impact fee of \$4,219 for each trip entering the interchange area.
- 2. The project shall build out the required transportation improvements as described in City plans. Additionally, the City will continue to evaluate the transportation network and make any changes necessary to promote safe traffic patterns.

www.ci.tumwater.wa.us

Mitigation Measures:

- 1. Prior to issuance of the Building Permit:
 - a. Construct a roundabout at the northbound Interstate 5 On/Off Ramp and Tumwater Boulevard intersection; or
 - b. Voluntarily pay a mitigation fee of \$4,219 per peak trip generated by this project under RCW 82.02.020 to be used as described herein: *Tumwater Boulevard/I-5 Interchange: The City's planned transportation improvements at the Tumwater Boulevard/I-5 interchange include converting the interchange to a roundabout diamond interchange by replacing the southbound on/off ramp signal and northbound stop controlled intersections with roundabouts. If the subject development has trips to the interchange*

before the roundabout is constructed, a temporary signal will be required.

This MDNS is issued under WAC 197-11-350; the lead agency will not act on this proposal for 14 days from the date below. Comments must be submitted no later than December 22, 2023, by 5:00 p.m.

Date:

December 8, 2023

<u>Responsible Official</u>:

Mila Matter

Michael Matlock, AICP Community Development Director

Contact person:

Alex Baruch, Associate Planner 555 Israel Road SW Tumwater, WA 98501 <u>abaruch@ci.tumwater.wa.us</u>

Appeals of this MDNS must be made to the City of Tumwater Community Development Department, no later than December 29, 2023, by 5:00 p.m. All appeals shall be in writing, be signed by the appellant, be accompanied by a filing fee of \$175, and set forth the specific basis for such appeal, error alleged and relief requested.

2018 WSBC DATA CHART		2018 WSBC DATA CHART	2018 WSBC DATA CHART			2018 WSBC DATA CHART			
	BUILDING	iΑ		BUILDING	G B		BUILDING	i C	
	RESIDENT	IAL		RESIDEN	TIAL		RESIDENT	TAL	
OCCUPANCY	R-2, B		OCCUPANCY	R-2, B		OCCUPANCY	R-2, B		OCCUPAN
TYPE OF CONSTRUCTION	TYPE VA		TYPE OF CONSTRUCTION	TYPE VA		TYPE OF CONSTRUCTION	TYPE VA		TYPE OF C
SPRINKLER SYSTEM	NFPA 13R NFPA 13 ((RESIDENTIAL) COMMERCIAL)	SPRINKLER SYSTEM	NFPA 13 NFPA 13	R (RESIDENTIAL) (COMMERCIAL)	SPRINKLER SYSTEM	NFPA 13R NFPA 13 (R (RESIDENTIAL) (COMMERCIAL)	SPRINKLER
LEVEL 1	10,158	SF	LEVEL 1	9,807	SF	LEVEL 1	16,804	SF	LEVEL 1
LEVEL 2	9,767	SF	LEVEL 2	9,460	SF	LEVEL 2	15,852	SF	LEVEL 2
LEVEL 3	9,047	SF	LEVEL 3	9,460	SF	LEVEL 3	15,852	SF	LEVEL 3
GROSS FLOOR AREA [SF]	28,972	SF	GROSS FLOOR AREA [SF]	28,727	SF	GROSS FLOOR AREA [SF]	48,508	SF	GROSS FLC

IRE SPRINKLER ISSER ROOM/FDC/PIV 2 OPEN SPACE 503 SF FIRE SPRINKLER RISER ROOM/FDC/PIV I		
SNEARCE 2189 SF PARKING COUNT BUILDING A: 24 UNITS BUILDING B: 24 UNITS BUILDING A: 24 UNITS BUILDING A: 25 TALLS = 1 UNIT 48 UNIT X 1.5 = 72 BUILDING A COMMERCIAL: 1,000 SF OF COMMERCIAL: 20 Conta Chart MUILDING D Area Area NSTRUCTION NFPA 138 (RESIDENTIAL Conta chart NFPA 138 (RESIDENTIAL Area Area SYSTEM NFPA 138 (RESIDENTIAL Conta chart NFPA 138 (RESIDENTIAL Data chart NFPA 138 (RESIDENTIAL Data chart NFPA 138 (RESIDENTIAL Conta chart NFPA 138 (RESIDENTIAL Conta chare (ast) SY	BARRIER FREE PARKING RESIDENTIAL PARKING 48 UNIT X .05 = 2.4 = 3 COMMERCIAL PARKING: 1 *1 PER 25 PARKING REQUIRED: 4 BIKE PARKING SHORT TERM: 1 BIKE SPACE PER 4 UNITS LONG TERM: 1 PER UNIT REQUIRED: SHORT TERM: 48 UNITS / 4 = 12 LONG TERM: 48 PROVIDED: SHORT TERM: 12 LONG TERM: 48 2	NORTH PARKING COUNT RESIDENTIAL BUILDING C: 48 UNITS BUILDING D: 18 UNITS 1.5 STALLS = 1 UNIT 66 UNIT X 1.5 = 99 BUILDING C COMMERCIAL: 681 S BUILDING C COMMERCIAL: 681 S BUILDING D COMMERCIAL: 830 S 3.5 STALLS = 1,000 SF OF COMME 1.51 X 3.5 = 5.28 = 6 TOTAL PARKING REQUIRED: 105 TOTAL PARKING PROVIDED: 105 5% EV PARKING 105 PARKING X .05 = 5.25 = 6 EV PARKING 105 PARKING X .05 = 5.25 = 6 EV PARKING OPEN SPACE REQUIREMENT: COMMERCIAL OPEN SPACE REQUI

REQUIRED:

PROVIDED: 45,352 SF

L

NT

DMMERCIAL: 681 SF OMMERCIAL: 830 SF

,000 SF OF COMMERCIAL

X .05 = 5.25 = 6 EV PARKING

SPACE REQUIREMENT

REQUIREMENT:

ERCIAL = 3,811 SF X .01 = 281,740 SF X .01 = 2,817.4 SF

15% OF SITE AREA OPEN SPACE REQUIREMENT: 1% OF COMMERCIAL AREA + 1% OF SITE = 38.11 SF

6.47 ACRE = 281,740 SF X 15% = 42,261 SF + 2,817.4 SF = 45,078.4 SF

12'-6" - BUILDING B 20'-6" ll6 YARD ECYC 6 YARD RECYCLE -- BUILDING D BARRIER FREE PARKING **RESIDENTIAL PARKING** 66 UNIT X .05 = 3.3 = 4 COMMERCIAL PARKING: 1 *1 PER 25 PARKING REQUIRED: 5 PROVIDED: 5 **BIKE PARKING** SHORT TERM: 1 BIKE SPACE PER 4 UNITS LONG TERM: 1 PER UNIT REQUIRED: SHORT TERM: _____66 UNITS / 4 = 16.5 = 17

LONG TERM: 66 PROVIDED: SHORT TERM: 18 LONG TERM 66

_____<u>2</u>

Date: By: Descriptic	08/15/2022 PRELIMINARY SITE	01/24/2023 PRELIMINARY SITE	03/14/2023 WC 2/ FORMAL SITE PL								
										TUMWATER WA	
Ā			. € 11	E		ť	R		PL		
	Sui Bel T 4 ww	, i te lev 25 w.	25 ue .4(0 , W)1.	/A 68	98 28 hite	00	 4 ure	e.co	om	
			S	IT	EI	PL	AN	J			

6 YARD TRASH

6 YARD RECYCLE

12'-6"

	: Description:	PRELIMINARY SITE PLAN SUBMITTAL	2/ FORMAL SITE PLAN KEVIEW KESPONSE					
)ate: By	(/15/2022	./24/2023 WC					
			II LITTLEROCK ROAD MIXED-USE		5945 LITTLEROCK RD SW	TUMWATER, WA		
	Ā	V RCI	Υ C		e Ire I	PLLC		
RESPONSE		520 Suite Belle T 42	112th e 250 evue, \ 25.401 v.Veer	Ave. WA 98 .6828 Archit	N.E. 3004 3 ecture	e.com		
PLAN REVIEW			SIT	TE PL	AN			
AAL SITE I			SF	IEET N	0.			
-14 FORN		sheet no.						

- **1.** A COMPLETE ENVIRONMENTAL CHECKLIST. If the project is located within the Port of Olympia property, the checklist must also be signed by a representative of the Port.
- 2. FEE OF \$880.00 TO BE PAID UPON SUBMITTAL. This includes the Public Notice fee.
- 3. NAME AND ADDRESS LIST OF PROPERTY OWNERS WITHIN 300 FEET OF THE SUBJECT PROPERTY.

SEPA ENVIRONMENTAL CHECKLIST

UPDATED 2015

Purpose of checklist:

Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

Instructions for applicants: [help]

This environmental checklist asks you to describe some basic information about your proposal. Please answer each question accurately and carefully, to the best of your knowledge. You may need to consult with an agency specialist or private consultant for some questions. You may use "not applicable" or "does not apply" only when you can explain why it does not apply and not when the answer is unknown. You may also attach or incorporate by reference additional studies reports. Complete and accurate answers to these questions often avoid delays with the SEPA process as well as later in the decision-making process.

The checklist questions apply to <u>all parts of your proposal</u>, even if you plan to do them over a period of time or on different parcels of land. Attach any additional information that will help describe your proposal or its environmental effects. The agency to which you submit this checklist may ask you to explain your answers or provide additional information reasonably related to determining if there may be significant adverse impacts.

Instructions for Lead Agencies:

Please adjust the format of this template as needed. Additional information may be necessary to evaluate the existing environment, all interrelated aspects of the proposal and an analysis of adverse impacts. The checklist is considered the first but not necessarily the only source of information needed to make an adequate threshold determination. Once a threshold determination is made, the lead agency is responsible for the completeness and accuracy of the checklist and other supporting documents.

Use of checklist for nonproject proposals: [help]

For nonproject proposals (such as ordinances, regulations, plans and programs), complete the applicable parts of sections A and B plus the <u>SUPPLEMENTAL SHEET FOR NONPROJECT ACTIONS (part D)</u>. Please completely answer all questions that apply and note that the words "project," "applicant," and "property or site" should be read as "proposal," "proponent," and "affected geographic area," respectively. The lead

agency may exclude (for non-projects) questions in Part B - Environmental Elements – that do not contribute meaningfully to the analysis of the proposal.

December 22, 2022

A. Background [help]

- 1. Name of proposed project, if applicable: [help] Littlerock Road Mixed-Use Development
- Name of applicant: [help]
 MCS-Littlerock, LLC Attn: Spencer Kelley
- 3. Address and phone number of applicant and contact person: [help] 7908 Sweet Iron Court SE, Tumwater, WA 98501

Phone: 360.556.9049

- 4. Date checklist prepared: [help]
- 5. Agency requesting checklist: [help] City of Tumwater
- Proposed timing or schedule (including phasing, if applicable): [help]
 Begin construction in Spring 2023.
- 7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.
 [help] The existing building(s) on the eastern portion of the site will likely

be redeveloped in the future. It is anticipated that Land Use permitting/SEPA

review will be required as part of permitting additional development/redevelopment.

8. List any environmental information you know about that has been

prepared, or will be prepared, directly related to this proposal. [help] A Geotechnical Report, dated March 15, 2022, has been prepared by South Sound Geotechnical; a Gopher Report, dated July 12, 2022, has been prepared by Krippner Consulting, LLC; a Cultural <u>Resource Assessment, dated August 2, 2022, has been prepared by Aqua Terra Cultural Resource</u> Consultants; a Wetland Evaluation, dated November 6, 2022, has been prepared by EnvioVector; and a Traffic Impact Analysis report, dated December 19, 2022, has been prepared by SCJ Alliance. The reports listed above are enclosed for review.

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain. [help]

There are no known pending applications.

EVALUATION FOR

AGENCY USE ONLY

	City of Tumwater SEPA Determination, Land Use	<u>ACCHOT OCCONCL</u>							
	Approval, Building Permit, Boundary Line Adjustment grading								
11.	Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.) [help]								
	Proposal includes construction of a commercial/residential mixed-use development on +/- 6.64 acres								
	providing a total of +/- 3,811 SF of commercial space and 114 apartment units. The project includes								
	on-site parking, underground utilities, and stormwater facilities to serve the development.								
12.	Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist [help]								
	The project is located at 5945 Littlerock Road SW								
	on Thurston TPNs 12703211600 & 12703220700								
	Section 3, Township 17N, Range 02W - Please								
	refer to the enclosed survey for legal descriptions.								
В.	ENVIRONMENTAL ELEMENTS [help]								
1.	Earth								
a.	General description of the site [help] Flat								
	Other:								
b.	What is the steepest slope on the site (approximate percent slope)? [help] Approximately 3%								

List any government approvals or permits that will be needed for your

10.

proposal, if known. [help]

What general types of soils are found on the site (for example, clay, C. **EVALUATION FOR** sand, gravel, peat, muck)? If you know the classification of **AGENCY USE ONLY** agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils. [help] Per the USDA Natural Resources Conservation Service Web Soil Survey, the site contains Nisqually loamy fine sand, a hydrologic group A soil, which is considered prime farmland if irrigated. Are there surface indications or history of unstable soils in the d. immediate vicinity? If so, describe. [help] There are no known surface indications or history of unstable soils in the immediate vicinity. Describe the purpose, type, total area, and approximate quantities e. and total affected area of any filling, excavation, and grading proposed. Indicate source of fill. [help] Site grading will include approximately 8,500 CY of material cut and approximately 8,500 CY of material fill. Import fill will be sourced from an approved local borrow pit. Could erosion occur as a result of clearing, construction, or use? f. If so, generally describe. [help] Erosion is always a possibility during construction. BMPs will be maintained to limit erosion impacts. About what percent of the site will be covered with impervious g. surfaces after project construction (for example, asphalt or buildings)? [help] Approximately 55% of the site will be covered with impervious surfaces after construction. h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any: [help] BMPs such as a stabilized construction entrance, silt fencing, and covering exposed soils will be used during construction. BMPs will be updated as necessary to limit erosion. 2. Air What types of emissions to the air would result from the proposal a. during construction, operation, and maintenance when the project is completed?

If any, generally describe and give approximate quantities if known. [help]

Emissions from equipment and dust may be present during construction but are expected to be minor. Emissions from vehicles entering and exiting the facility will be present at completion.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe. [help]

There are no known off-site sources of emissions

or odor that may affect the proposed project.

c. Proposed measures to reduce or control emissions or other impacts to air, if any: [help]

Construction equipment will not be allowed to idle

for extended periods of time.

- 3. Water
- a. Surface Water: [help]
 - Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into. [help]

Trosper Lake, the nearest surface water body, is

located approximately 1,230 feet from the project site.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans. [help]

No work will be performed over, in, or adjacent

to the described waters.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material. [help]

No fill or dredge material will be placed in or

removed from surface water or wetlands.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and

EVALUATION FOR AGENCY USE ONLY

approximate quantities if known. [help]

No, the proposal will not require surface water

EVALUATION FOR AGENCY USE ONLY

withdrawals or diversions.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan. [help]

No, per FEMA FIRM 53067C0281E, the site is not within a 100-year floodplain.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge. [help]

No waste materials will be discharged to surface waters.

The project will be served by municipal sanitary sewer.

- b. Ground Water:
 - Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known. [help]

No groundwater will be withdrawn from a well,

the project will be connected to municipal water service.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals...; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve. [help]

No waste will be discharged into the ground from septic tanks

the project will be connected to City of Tumwater sanitary sewer.

- c. Water runoff (including stormwater):
 - Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow?

Will this water flow into other waters? If so, describe. [help] Stormwater runoff will be collected, treated, and

EVALUATION FOR AGENCY USE ONLY

infiltrated in an on-site stormwater pond facility.

2) Could waste materials enter ground or surface waters? If so, generally describe. [help]

It is unlikely that waste materials will enter ground or surface waters. Sanitary refuse

will be stored in covered containers/dumpsters before removal by a refuse company.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.

No, stormwater will be infiltrated on-site.

d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:

Stormwater will be collected, treated, and

infiltrated on-site to limit drainage pattern impacts.

- 4. Plants [help]
- a. Check the types of vegetation found on the site: [help]
 - deciduous tree: alder, maple, aspen, other
 - \Box evergreen tree: fir, cedar, pine, other
 - □shrubs
 - igrass
 - pasture
 - crop or grain
 - orchards, vineyards or other permanent crops.
 - wet soil plants: cattail, buttercup, bullrush, skunk cabbage, other
 - water plants: water lily, eelgrass, milfoil, other other types of vegetation
- b. What kind and amount of vegetation will be removed or altered? [help]

Approximately 4.5-acres of existing vegetation including trees, brush, & grass will be removed.

c. List threatened and endangered species known to be on or near the site. [help]

According to the U.S. Fish & Wildlife's IPaC map, Golden Paintbrush is a threatened flowering plant species which may be affected by project activities in this location. There is no known presence of Golden Paintbrush on the project site, however, we are noting the potential.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any: [help]

Landscaping will be installed to meet or exceed

minimum City code requirements.

e. List all noxious weeds and invasive species known to be on or near the site.

Per Thurston County GeoData, Bohemian Knotweed,

a noxious weed, was discovered on-site in 2004.

5. Animals

- a. <u>List</u> any birds and <u>other</u> animals which have been observed on or near the site or are known to be on or near the site. Examples include: [help]
 - birds: hawk heron eagle songbirds other:
 - mammals: deer, bear, elk, beaver, other:
 - fish: bass, salmon, trout, herring, shellfish
 - other:

birds: typical crows and raptors found in urban enviroments

mammals: opossum, raccoons, squirrels, mice

b. List any threatened and endangered species known to be on or near the site. [help] Per IPaC mapping, threatened species include: Olympia Pocket Gopher, Yelm Pocket Gopher, Marbled Murrelet, Streaked Horned Lark, Yellow-billed Cuckoo, Oregon Spotted Frog, & Bull Trout. Endangered

species include the Taylor's Checkerspot. There are no know instances of the aforementioned species on-site, however we are noting the potential.

- c. Is the site part of a migration route? If so, explain. [help]
 Yes, the site is located within the Pacific Flyway.
- d. Proposed measures to preserve or enhance wildlife, if any: [help] No measures are proposed.
- e. List any invasive animal species known to be on or near the site. There are no known invasive animal species on or near the site.

6. Energy and natural resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs?
 Describe whether it will be used for heating, manufacturing, etc. [help]

Electricity will be used to meet the project's energy needs for heating, lighting, etc.

EVALUATION FOR AGENCY USE ONLY

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe. [help]

The proposed project is not anticipated to affect the potential use of solar energy by adjacent properties.

EVALUATION FOR AGENCY USE ONLY

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any: [help]

The project will be designed to comply with current energy code. Energy conservation

features may include LED lighting, building insulation, & energy efficient windows.

7. Environmental health

cleanup activities.

- a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe. [help]
 - Describe any known or possible contamination at the site from present or past uses. The site, previously known as Tumwater Pickup Parts, was listed by Ecology as a known contaminated site but cleanup has been completed and an NFA was issued by Ecology following
 - 2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity. There are no known hazardous chemicals/conditions that might affect development and design. Per the National Pipeline Mapping System, there are no hazardous liquid or gas transmission pipelines in the vicinity.
 - Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project's development or construction, or at any time during the operating life of the project.

Gasoline, oil, and diesel fuels may be stored and used during construction. No hazardous chemicals will be produced by the project during construction or at completion.

4) Describe special emergency services that might be required.

No special emergency services are anticipated.

5) Proposed measures to reduce or control environmental health hazards, if any:

Gasoline, oil, and/or diesel fuels for heavy equipment will be kept in sealed & approved containers.

b. Noise

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)? [help]

Traffic on adjacent roadways creates noise in the area but is not anticipated to affect the project.

- 2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site. [help] During construction and development, noise may be present from heavy equipment and contractor's tools. Construction work will be performed during typical daytime work hours. At completion, traffic from vehicles entering and exiting the completed project will occur but noise is expected to be minor.
- Proposed measures to reduce or control noise impacts, if any: [help]

Work will be limited to typical daytime work hours and equipment

will not be allowed to idle for extended periods of time.

8. Land and shoreline use

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe. [help]

The site is currently vacant. Surrounding uses include Tumwater

Middle School, vacant land, commercial retail, and a cemetery.

b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use? [help]

No, the site has not been used as working farmlands or forest lands.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how:

No, the project will not affect or be affected by surrounding working farm or forest land operations.

c. Describe any structures on the site. [help] There are no structures on the project site.

d. Will any structures be demolished? If so, what? [help]
 No, the site is vacant.

EVALUATION FOR AGENCY USE ONLY

What is the current zoning classification of the site? [here] The site is zoned GC - General Commo	ercial. Evaluation fo
What is the current comprehensive plan designation of The comprehensive plan designation is GC - Generation	f the site? <u>[help]</u> al Commercial.
If applicable, what is the current shoreline master prog of the site? [help]	gram designation
Not applicable.	
Has any part of the site been classified as a critical are county? If so, specify. [help] Yes, the site is located within a Class 1 Critical Aquifer Recharge I Agricultural Critical Aquifer Recharge Area.	ea by the city or e Area and a Class
Approximately how many people would reside or work completed project? [help] Approximately 16-20 people will work in the completed project approximately 285 people will reside in the completed project.	t and
Approximately how many people would the completed displace? [help]	l project
No people will be displaced by the comple	eted project.
Proposed measures to avoid or reduce displacement i [help]	impacts, if any:
No displacement impacts are anticipate	ed, no
measures are proposed.	
Proposed measures to ensure the proposal is compati and projected land uses and plans, if any: [help]	ible with existing
The project will be reviewed by City of Tumwater staff to ensure lan	nd use compatibility.
Proposed measures to ensure the proposal is compati	ible with nearby
agricultural and forest lands of long-term commercial s any:	Significance, in
agricultural and forest lands of long-term commercial s any: No impacts to nearby agricultural or forest lands	s of long-term

9. Housing

EVALUATION FOR AGENCY USE ONLY

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing. [help]

114 middle-income housing units will be provided.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing. [help]

No housing units will be eliminated by the project.

c. Proposed measures to reduce or control housing impacts, if any: [help]

No housing impacts are anticipated, no measures are proposed.

10. Aesthetics

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed? [help]

The tallest height of the proposed buildings is +/- 41 feet. The principal exterior building materials are brick veneer and Hardie siding.

b. What views in the immediate vicinity would be altered or obstructed? [help]

No views in the immediate vicinity will be altered or obstructed.

c. Proposed measures to reduce or control aesthetic impacts, if any: [help]

The project will be designed to comply with City of Tumwater guidelines for development and construction, and will be reviewed by City staff to ensure compatibility with aesthetic requirements for permit approval.

- 11. Light and glare
- a. What type of light or glare will the proposal produce? What time of day would it mainly occur? [help]
 Light will be produced during evening hours from exterior and pathway lighting, and luminaires within parking areas
- b. Could light or glare from the finished project be a safety hazard or interfere with views? [help]

It is unlikely that light or glare from the finished project will cause safety hazards or view interference.

c. What existing off-site sources of light or glare may affect your proposal? [help]

There are no known off-site sources of light or glare that will affect the proposed project.

Lighting shall meet Tumwater ordinance regulations for light trespass and fixture type. d. Proposed measures to reduce or control light and glare impacts, if any: [help]

Exterior lighting will be positioned to prevent light exposure onto adjacent properties.

12. Recreation

- What designated and informal recreational opportunities are in the immediate vicinity? [help]
 Trosper Lake Park, an undeveloped neighborhood park which provides access to Trosper Lake, is located adjacent to the project site.
- b. Would the proposed project displace any existing recreational uses? If so, describe. [help]

No, the proposed project will not displace any

existing recreational uses.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any: [help]

An open space playfield will be constructed within

the development for use by residents and their guests.

13. Historic and cultural preservation

- a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe. [help] Yes, the Olympia-Grand Coulee No. 1 Transmission Line (overhead high-voltage line) bisects the project site. Per the Department of Archaeology and Historic Preservation's WISAARD map, the Transmission Line is property ID no. 725297. The Union Cemetery - Pioneer Cavalry Cemetery, listing no. 97000323 is located along the northern boundary of the site.
- b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources. [help] The site is mapped in an area of Moderate Risk to contain environmental factors with archaeological resources. It is also in an area of Tribal interest for the Nisqually, Squaxin, Cowlitz, and Confederated Tribes of the Chehalis Reservation. Additionally, the site is adjacent to the Tumwater Pioneer Cemetery and potentially contains unmarked graves. The site plan has been designed to limit
- c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc. [help]

A Cultural Resources Report, dated August 2, 2022, has been prepared by Aqua Terra Cultural Resource Consultants and is enclosed for review. A query of the Department of Archaeology & Historic Preservation's WISAARD map system was also performed on 8/22/2022.

EVALUATION FOR AGENCY USE ONLY

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

If cultural or historic resources are discovered during demolition, grading, or construction,

activities will cease until a qualified archaeologist evaluates the situation and outlines a course of action.

14. **Transportation**

- a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on site plans, if any. [help] The site is served by Littlerock Road SW. The existing access driveway from Littlerock Road SW will be revised and extended west within an easement to serve the development.
- b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop? [help]

Yes, the site and geographic area are served by Intercity Transit.

c. How many additional parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate? [help]

The completed project will have 201 parking spaces. No spaces will be eliminated by the project.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private). [help]

No new roads or improvements to existing roads are proposed. Access

will be provided by one right-in-right-out driveway from Littlerock Road.

e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe. [help]

No, the project will not use or occur in the immediate vicinity of water, rail, or air transportation.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles).

EVALUATION FOR AGENCY USE ONLY

Follow requirements outlined by DAHP in their review of the cultural resource study. What data or transportation models were used to make these estimates? [help]

The project will generate approximately 787 trips per day. The ITE Manual was used

to make this estimate. Please refer to the enclosed Traffic Impact Analysis report.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe: No, the project will not interfere with, affect, or be affected by movement of

agricultural or forest products in the area.

h. Proposed measures to reduce or control transportation impacts, if any: [help]

No measures are proposed at this time as the Traffic Impact Analysis prepared for the project confirms that nearby intersections will operate within acceptable level of service (LOS) thresholds. Please refer to the enclosed Traffic Impact Analysis report for additional information.

15. Public services

- a. Would the project result in an increased need for public services (for example: fire protection, police protection, public transit, health care, schools, other)? If so, generally describe. [help] The project is likely to result in an increased need for public services such as fire protection, police, public transit, health care, and schools to accommodate residents of the completed project.
- b. Proposed measures to reduce or control direct impacts on public services, if any. [help]

Impacts are anticipated to be minor, no measures are proposed.

16. Utilities

- a. Circle utilities currently available at the site: [help] electricity natural gas water refuse service telephone sanitary (sewer) septic system, other:
- b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed. [help]
 Electricity Puget Sound Energy Refuse LeMay Pacific Disposal
 Water City of Tumwater Telephone Lumen
 Sanitary Sewer City of Tumwater Cable Comcast

EVALUATION FOR AGENCY USE ONLY

C. Signature [HELP]

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

' Ulm Signature:

Name of signee: Nick Wheeler

Position: Business Manager

Agency/Organization: ______JSA Civil, LLC

Date Submitted: February 2, 2023

D. Signature – Property Owner's Review, Port of Olympia (if applicable)

		(
ĺ	l certifv that	I have reviewed the above e

I certify that I have reviewed the above environmental checklist prepared by the applicant and that the project is consistent with the tenant's lease for Port property. The Port's comments have been incorporated in the document as submitted or as noted.

Port of Olympia – Please Print: _____

Port of Olympia – Signature:

Date Submitted:

E. CITY OF TUMWATER

Alex Baruch, Associate Planner

Reviewed by:

Date:

12-06-2023

F. Supplemental sheet for nonproject actions [help]

(IT IS NOT NECESSARY to use this sheet for project actions)

Because these questions are very general, it may be helpful to read them in conjunction with the list of the elements of the environment. EVALUATION FOR AGENCY USE ONLY

1.	When answering these questions, be aware of the extent the proposal, or the types of activities likely to result from the proposal, would affect the item at a greater intensity or at a faster rate than if the proposal were not implemented. Respond briefly and in general terms. How would the proposal be likely to increase discharge to water; emissions to air; production, storage, or release of toxic or hazardous substances; or production of noise?	EVALUATION FOR AGENCY USE ONLY
	Proposed measures to avoid or reduce such increases are:	
2.	How would the proposal be likely to affect plants, animals, fish, or marine life?	
	Proposed measures to protect or conserve plants, animals, fish, or marine life are:	
3.	How would the proposal be likely to deplete energy or natural resources?	
	Proposed measures to protect or conserve energy and natural resources are:	
4.	How would the proposal be likely to use or affect environmentally sensitive areas or areas designated (or eligible or under study) for governmental protection; such as parks, wilderness, wild and scenic rivers, threatened or endangered species habitat, historic or cultural sites, wetlands, floodplains, or prime farmlands?	

Proposed measures to protect such resources or to avoid or reduce impacts are:

EVALUATION FOR AGENCY USE ONLY

5. How would the proposal be likely to affect land and shoreline use, including whether it would allow or encourage land or shoreline uses incompatible with existing plans?

Proposed measures to avoid or reduce shoreline and land use impacts are:

6. How would the proposal be likely to increase demands on transportation or public services and utilities?

Proposed measures to reduce or respond to such demand(s) are:

7. Identify, if possible, whether the proposal may conflict with local state, or federal laws or requirements for the protection of the environment.

SOUND URBAN FORESTRY Appraisals, Planning, Urban Landscape Design and Management

Littlerock Road Mixed-Use Project 5945 Littlerock Road SW Tumwater, Washington 98501

Tree Protection Plan

Prepared for: MCS – Littlerock, LLC, Applicant

JSA Civil, Applicants Representative

Prepared by: Kevin M. McFarland, SUF Consulting Urban Forester/ISA Certified Arborist & Tree Risk Assessor Qualified

Date: 1/22/2023

This report has been developed as part of the proposed 8-acre Littlerock Road mixed-use project at 5945 Littlerock Road SW, in Tumwater, Washington. This plan will satisfy the requirements as specified by the City of Tumwater Protection of Trees and Vegetation Ordinance (TMC 16.08) and Development Guidelines and Standards.

I. Overall Site & Vegetation Description

The 8-acre site is currently classified as two parcels, #12703211600 (7.07-acres) and #12703220700 (.92-acres). As part of the project, a separate application is submitted for a boundary line adjustment. The western apartment parcel will cover 6.46 +/- acres while the commercial property along Littlerock Road will cover 1.52+/- acres.

The apartment parcel is mostly open, mowed field grass. There are a few trees along the northern property line and a wooded area in the southwest bump-out. The trees are dominated by Douglas fir with a few scattered big leaf maple and cottonwood. They are in fair to good condition. Understory in the forested area include salal, sword fern and mahonia. Patches of Himalayan blackberry are found around the forest edge. The commercial parcel contains no trees and is a mix of field grass and gravel.

Aerial of Property

II. Inventory of Trees

A nearly 100% survey of the trees was conducted in 2022 which was then verified by Sound Urban Forestry LLC in January 2023. Several of the trees originally surveyed are dead and a few species misidentified. An overview of all trees within the site is presented in the table below.

		<u> </u>
Species	DBH	Number of Trees
Douglas Fir	6-12"	13
	12-18"	30
	18-24"	22
	24-30"	11
	30-36"	5
	36"+	2
Big Leaf Maple	6-12"	3
	12-18"	2
*Cottonwood	6-12"	3
	12-18"	1
	18-24"	2
*Willow	12"	1
		Total = 95

 Table 1. Inventory of Trees within Apartment Parcel

*Do not count toward tree retention calculations per TMC

Landmark Trees

I found no trees within the site that would be considered specimen or 'Landmark' trees.

Off-Site & Edge Trees

No offsite trees were identified with the potential of impacts.

III. Tree Retention Calculations

Trees to be retained are located along the northern perimeter and within the open space areas around the apartment buildings in the southwest corner. A summary of those trees can be found within Table 2 and they are highlighted in green on the attached site plan. Per the TMC, trees that measure 24" and greater count as two trees and cottonwoods do not count at all.

Species	DBH	Number of Trees	Count Toward
			Retention
Douglas Fir	6-23"	31	31
Douglas Fir	24"+	8	16
Big Leaf Maple	8"	1	1
Cottonwood	8-24"	5	0
			Total = 48

Table 2. Inventory of Trees to be Retained within the Apartment Parcel

	a	0.71	D ()	a b b b	•			D 1
Table 3.	Summary	of Tree	Ketention	Calculations	tor	the A	partment	Parcel

Gross Acreage	6.46
Total Trees Within Site (Table 1)	88
20% Tree Retention	18 Trees
*12 Trees/ Acre Retention	78 Trees
Proposed Tree Retention	48 Trees
Shortfall on Required Retention	30 Trees
Required Replanting (3:1)	90 Trees

*This is the greater amount and therefore required by TMC

Table 4. Summary of Tree Retention Calculations for the Commercial Parcel

Gross Acreage	1.52
Total Trees Within Site	0
20% Tree Retention	NA
*12 Trees/ Acre Retention	18 Trees
Proposed Tree Retention	NA
Shortfall on Required Retention	18 Trees
Required Replanting (1:1)	18 Trees

IV. Replanting

Replanting will be necessary within both parcels. Because it would be possible to meet the minimum in the apartment parcel, the applicant will be required to replant at a rate of 3:1. Per the standards outlined in TMC 16.08.070, priority must be given to replanting within a tree protection open space in order to obtain 80% coverage in 15 years. There is ample room around the trees to be retained for replanting. These requirements will be addressed with the submitted landscape plans.

IV. Tree Protection

Tree protection fencing is recommended at multiple locations, as indicated in orange on the attached site plan. This fencing should meet the City's standards and remain in place the entire duration of the construction process.

Professionally Submitted,

Hen M. M. Earland

Kevin M. McFarland, Principal ISA Certified Arborist PN-0373 & ISA Tree Risk Assessment Qualified Sound Urban Forestry, LLC

Locations of Retained Trees and Recommended Tree Protection Fencing

Traffic Impact Analysis

Littlerock Road Mixed Use Development

Tumwater, Washington

Prepared For: JSA Civil, LLC

Prepared By: SCJ Alliance 8730 Tallon Lane NE, Suite 200 Lacey, WA 98516 360.352.1465

June 2023

Traffic Impact Analysis

Project Information	
Project:	Littlerock Road Mixed Use Development
Prepared for:	JSA Civil, LLC
Reviewing Agency	
Jurisdiction:	City of Tumwater
Project Representative	
Prepared by:	SCJ Alliance 8730 Tallon Lane NE, Suite 200 Lacey, WA 98516 360.352.1465 scjalliance.com
Contact:	Ryan Shea, PTP, Senior Transportation Planner
Project Reference:	SCJ #22-000200
	Path: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\3 - Dels\Traffic Impact Analysis 2023-0614.docx

Signature

The technical material and data contained in the Traffic Impact Analysis were prepared under the supervision and direction of the undersigned, whose seal, as a professional engineer licensed to practice as such, is affixed below.

Prepared by Ryan Shea, PTP, Senior Transportation Planner

Approved by Perry Shea, PE, Principal

Table of Contents

1	Intro	oduction1
	1.1	Project Overview
	1.2	Study Context
2	Proj	ect Description2
	2.1	Development Proposal
3	Exist	ting Conditions4
	3.1	Area Land Uses
	3.2	Roadway Inventory4
	3.3	Traffic Volume Data4
	3.4	Traffic Volume Adjustments5
	3.5	Crash History8
	3.6	Transit and Non-Motorized Facilities
4	Proj	ect Traffic Characteristics9
	4.1	Site-Generated Traffic Volumes9
	4.2	Site Traffic Distribution and Assignment10
5	Futu	re Traffic Conditions12
	5.1	Roadway Network Improvements12
	5.2	Future Traffic Volumes
6	Traf	fic Operations Analysis15
	6.1	Level of Service
	6.2	Volume to Capacity Ratio
	6.3	Intersection Analysis16
7	Sum	mary and Conclusions18

List of Tables

Table 1. Existing Crash Severity by Study Intersection	8
Table 2. PM Peak Hour Trip Generation Rates	9
Table 3. PM Peak Hour Project Trip Generation	10
Table 4. Level of Service Criteria for Intersections	16
Table 5. PM Peak Hour Intersection Operating Conditions	17

List of Figures

Figure 1. Site Vicinity Map	1
Figure 2. Preliminary Site Plan	3
Figure 3. Existing Channelization and Intersection Control	6
Figure 4. Existing 2022 PM Peak Hour Traffic Volumes	7
Figure 5. Site-Generated PM Peak Hour Volumes	1
Figure 6. Projected 2024 PM Peak Hour Traffic Volumes without Project	L3
Figure 7. Projected 2024 PM Peak Hour Traffic Volumes with Project	4

List of Appendices

- Appendix A Traffic Volume Counts
- Appendix B Traffic Volume Calculation Worksheets
- Appendix C Capacity Analysis Worksheets

1 Introduction

1.1 **Project Overview**

The Littlerock Road Mixed Use Development is being proposed west of Littlerock Road and immediately north of Tumwater Middle School, near the Littlerock Road/Kingswood Drive Intersection in Tumwater, Washington. The proposed project includes 114 apartment units and approximately 3,800-square feet of general commercial space.

Figure 1 illustrates the site vicinity and the transportation network serving the project area.

Figure 1. Site Vicinity Map

1.2 Study Context

This report has been prepared to provide the traffic analysis and project information based on City of Tumwater TIA guidelines, to assist the city in reviewing the development proposal. A Traffic Scoping Letter was prepared and submitted to the city, which documented the trip generation, distribution, and assignment of estimated project trips. The city approved the methodology and requested the following intersections be included for analysis:

- Trosper Road at Littlerock Road
- Trosper Road at I-5 SB Ramps/Tyee Drive
- Littlerock Road at Kingswood Drive
- Littlerock Road at Odegard Road
- Littlerock Road at Israel Road
- Proposed Site Driveway

Operational analysis has been prepared for existing 2022 PM peak hour conditions and forecasted 2024 PM peak hour conditions with and without completion of the development.

2 **Project Description**

2.1 Development Proposal

The proposed project would construct 114 apartment units and 3,800-square feet of general commercial space on undeveloped land in the City of Tumwater. Access to the project will be provided by one right-in-right-out driveway onto Littlerock Road. An emergency only access is proposed on the existing private road currently used as the northern Tumwater Middle School driveway. The project is anticipated to open in 2024.

The preliminary site plan is provided on **Figure 2**.

Figure 2. Preliminary Site Plan

3 Existing Conditions

3.1 Area Land Uses

The proposed project will be located on undeveloped land west of Littlerock Road and immediately north of Tumwater Middle School, near the Littlerock Road/Kingswood Drive Intersection in Tumwater, Washington. The site is currently zoned GC General Commercial. The adjacent land uses include single family and multifamily residential, educational, office/commercial, and cemetery/memorial.

3.2 Roadway Inventory

3.2.1 Littlerock Road

Littlerock Road is classified by City of Tumwater as arterial. In the project vicinity, Littlerock Road provides one lane in each direction with sidewalks and bicycle lanes on both sides. Between Kingswood Drive and Tumwater Boulevard, this roadway is divided by a planter strip median. The posted speed limit is 35 mph.

3.2.2 Trosper Road

Trosper Road is an east-west arterial with a posted speed limit of 25 mph. In the project vicinity, this roadway provides two travel lanes in each direction with sidewalks on both sides. Trosper Road provides connections to and from Interstate 5.

3.2.3 Odegard Road

Odegard Road is a two lane east-west roadway classified by the City of Tumwater as collector and has a posted speed limit of 25 mph. The intersection of Odegard Road and Littlerock Road operates under roundabout control and provides a location for U-turn maneuvers on Littlerock Road.

3.2.4 Kingswood Drive

Kingswood Drive is an east-west collector extending from Littlerock Road to Tyee Drive. This roadway has two travel lanes with a two-way left turn lane (TWLTL) and sidewalks on both sides. Kingswood Drive has a posted speed limit of 25 mph.

3.2.5 Israel Road

Israel Road is an east-west collector street that runs from 70th Avenue and Littlerock Road on the west to Tumwater Boulevard on the east, serving destinations in the south side of the City of Tumwater. In the project vicinity the roadway has a single lane in each direction with paved shoulders that transition to bicycle lanes just east of the intersection with Old Israel Road. Sidewalks are provided along the south side of the street through the study area, and on the north side between Old Israel Road and Littlerock Road. The street has a posted speed limit of 35 mph.

A summary of the existing intersection channelization and control type for each of the study intersections is provided in **Figure 3**.

3.3 Traffic Volume Data

Traffic Count Consultants, TC2, a transportation data collection service, provided evening peak period turning movement counts at each of the study intersections. These counts were collected in 2015 and
2022 between 4:00 and 6:00 PM for the PM peak hour. The turning movement count diagrams are provided in **Appendix A**.

3.4 Traffic Volume Adjustments

Due to Covid-19, traffic volumes have been reduced in most areas in comparison with 2019 levels, which may cause peak period traffic counts to be low. To help provide more accurate traffic volumes, prepandemic PM peak hour counts from the 2015 Tumwater Transportation Plan were used for comparison to the collected 2022 count volumes to determine if any adjustments should be made to these counts.

An annual growth rate of 2% was applied to the 2015 traffic volume counts to establish a baseline volume for 2022. The current turning movement count volumes were then compared to this baseline. Based on this comparison, it was determined that a small reduction in traffic volumes during the PM peak hour is still occurring. An adjustment rate of 10% was applied to all study area intersections

After these initial adjustment calculations, the volumes were compared to historic counts and individual traffic movements were balanced to better match the historic count, where available, and also balance with up or down stream volumes. All of these volume adjustments are provided in **Appendix B**.

Figure 4 shows the adjusted existing 2022 PM peak hour traffic volumes for the study intersections.

Littlerock Road Mixed Use Tumwater, Washington Traffic Impact Analysis Figure 3 Existing Channelization and Intersection Control

Littlerock Road Mixed Use Tumwater, Washington Traffic Impact Analysis Figure 4 Existing 2022 PM Peak Hour Traffic Volumes

3.5 Crash History

The Washington Department of Transportation provides crash data for study area roadways. The data was collected over the five-year span between January 1, 2017 and December 31, 2021. We have summarized the crash data for the study intersections in **Table 1**.

	sting cre		cy by 500	ay meerse	ction		
Intersection	Fatal	Serious Injury	Minor Injury	Possible Injury	Property Damage Only	Unknown	Total
Littlerock Road/Trosper Road/ South 2 nd Ave	0	0	1	8	29	0	38
Trosper Road/I-5 SB Ramps/ Tyee Drive	0	0	2	8	38	0	48
Kingswood Drive/Littlerock Road	0	0	0	4	6	0	10
Odegard Road/Littlerock Road	0	0	2	1	8	1	12
Littlerock Road/Israel Road	0	0	0	2	18	0	20
Total Crashes	0	0	5	23	99	1	128

 Table 1. Existing Crash Severity by Study Intersection

Overall, approximately 75% of all the reported crashes were classified as property damage only (no apparent injury). There were no fatal or serious injury crashes reported.

3.6 Transit and Non-Motorized Facilities

Intercity Transit currently serves the City of Tumwater with transit services providing connections to Lacey, Olympia, and Yelm. The closest transit stop is located approximately 0.17 miles south of the project site along Littlerock Road.

In the project vicinity, sidewalks and bike lanes are currently provided along both sides of Littlerock Road.

4 Project Traffic Characteristics

The project-related characteristics having the most effect on area traffic conditions are peak hour trip generation and the directional distribution of traffic volumes on the surrounding roadway network. The PM peak hour was selected as the traffic analysis period as it represents the highest potential traffic condition on area roadways.

4.1 Site-Generated Traffic Volumes

Vehicle trip generation was calculated using the trip generation rates contained in the 11th edition of the <u>Trip Generation Manual</u> by the *Institute of Transportation Engineers (ITE)*. Multifamily Housing (Low-Rise) Not Close to rail Transit (land use code 220), and Strip Retail Plaza (<40k) (land use code 822) land use categories match the proposed development and have been used to calculate the trip generation.

For this analysis, the "fitted-curve" equation was used when available to estimate trips in preference to using the average trip rate as this approach was recommended by ITE.

Internal Capture

Internal capture calculations were prepared to reflect on-site interaction between the mix of uses in the proposed Littlerock Road Mixed Use Development. Given the small size of the proposed project the city of Tumwater has directed that no internal capture reduction be assumed.

Pass-By

It is anticipated that this project will attract some traffic from people already driving on adjacent roadways. These trips are not new trips added to the local roadway system (primary trips) but represent "pass-by" trips according to the following definition:

Pass-by trips: Pass-by trips are trips made as an intermediate stop from an origin to a primary destination (i.e., stopping to shop on the way home from work) by vehicles passing directly by the project driveway.

The pass-by percentage for shopping center, contained in the 3rd edition of the <u>Trip Generation</u> <u>Handbook</u> by ITE was used for the commercial component of the Littlerock Road Mixed Use Development with a PM Peak hour rate of 34 percent. In the vicinity of project site, Littlerock Road has a median therefore all pass-by trips were assigned as coming from the north and leaving to the south.

	Table 2. PM	Peak Hour Tr	rip Genera	ation Rates			
Land Use Category	Land Use Code (LUC)	Unit	Trip Rate	Internal Capture Rate	Pass-By Rate	Enter %	Exit %
Multi-family Housing (Low-Rise) Not Close to Rail Transit	220	Dwelling Units	0.51	0%	0%	63%	37%
Strip Retail Plaza (<40k)	822	1,000 sqft	10.31*	0%	34%	50%	50%

The trip generation rates used for the PM peak hour are shown in Table 2.

*Fitted curve equation rate

The total trip generation expected from this project is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The PM peak hour trip generation calculations are shown in **Table 3** and provided in **Appendix B**.

	Tub	c 5. Thirt cak	nour roject n	ip denerati	011		
Land Use	Size	Total Trips	Internal Capture Trips	Pass-By Trips	New-to- Network Total	Enter	Exit
Apartments	114	58	0	0	58	37	21
General Commercial	3.8	39	0	13	26	13	13
Total Project Trips	-	97	0	13	84	50	34

Table 3. PM Peak Hour Project Trip Generation

4.2 Site Traffic Distribution and Assignment

We have prepared a trip distribution and assignment for the proposed development. The directional distribution of traffic to and from the proposed project was estimated using the regional transportation model. The Thurston Regional Planning Council (TRPC) created the area-wide transportation model with cooperation from local jurisdictions within the county. The model, developed using the Emme/4 software package, has been calibrated to represent the existing vehicle travel patterns throughout the entire county.

The Littlerock Road Mixed Use Development is located within TAZ 275 of the regional transportation model. A distribution analysis was performed for this project by conducting a "Select Zone Analysis" for this TAZ. This feature of the Emme/4 software package allows all of the traffic into and out of a particular zone to be isolated and shown separately from the rest of the traffic on the network. This graphically shows the percentage of vehicles currently using each of the available routes into and out of the area (Interstate 5, Israel Road, Littlerock Road, etc.). From this information, regional distribution percentages were calculated for future traffic traveling to and from the Littlerock Road Mixed Use Development. This select zone analysis plot is included in **Appendix B** to document the percentage of project trips that would travel through the Tumwater Boulevard interchange.

The resultant traffic distribution percentages and traffic assignments are shown on **Figure 5** for the PM peak hour.

Littlerock Road Mixed Use Tumwater, Washington Traffic Impact Analysis Figure 5 Site-Generated Traffic Volumes PM Peak Hour

5 Future Traffic Conditions

5.1 Roadway Network Improvements

The City of Tumwater Transportation Master Plan and the 2020-2025 Transportation Improvement Program identifies the following roadway improvements within the vicinity of the project:

- Transportation Plan Project #R31– Odegard Road Littlerock Road to Tyee Drive. Construct 2 lane road with on-street parking.
- Transportation Plan Project #R32 Bishop Road Littlerock Road to Tyee Drive. Construct 2 lane road with on-street parking.
- Tyee Drive and Kingswood Drive intersection improvements This intersection is planned to be improved to roundabout control as part of a separate development project.

None of these projects are expected to be complete before the proposed project and were not accounted for in the intersection analysis.

5.2 Future Traffic Volumes

Traffic volume forecasts were prepared for PM peak hour conditions for the 2024 opening year. The future traffic volume forecast includes non-specific background traffic growth, pipeline development traffic and estimated traffic generated by the proposed project.

It is anticipated that background growth will occur within the study area and affect traffic volumes. To estimate the non-specific traffic growth that will occur at study intersections, an annual growth rate of 4% was applied to the base year traffic volumes, as identified by the City of Tumwater.

The following pipeline developments were identified by the City of Tumwater in the vicinity of the proposed project:

- Trosper Woods Subdivision
- Israel Road Self Storage
- Bishop Road Apartments

The projected 2024 traffic volumes without the project are shown on **Figure 6.** The projected 2024 traffic volumes with project are shown on **Figure 7.**

The traffic volume calculations for the study intersections are included in **Appendix B**.

Littlerock Road Mixed Use Tumwater, Washington Traffic Impact Analysis Figure 6 Projected 2024 PM Peak Hour Traffic Volumes Without Project

Littlerock Road Mixed Use Tumwater, Washington Traffic Impact Analysis Figure 7 Projected 2024 PM Peak Hour Traffic Volumes With Project

6 Traffic Operations Analysis

Traffic analyses were conducted to identify any deficiencies within the study area for the PM peak hour in the 2022 base year and the 2024 project opening year. The PM peak hour was selected as the traffic analysis period as it represents the highest potential traffic condition on area roadways.

6.1 Level of Service

The acknowledged source for determining overall capacity for arterial segments and independent intersections is the current edition of the *Highway Capacity Manual* (HCM). Capacity analyses were completed for the 2022 base year and projected 2024 PM peak hour traffic volume scenarios for all study intersections.

Intersection analysis for stop-controlled intersections and traffic signal-controlled intersections was performed using the Synchro software package. This software implements the methods of the 6th edition HCM. The analysis for the intersections with roundabout control were performed using the SIDRA software package (version 9.0).

Capacity analysis results are described in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion).

The City of Tumwater has identified a city-wide mobility target of LOS D or better, except in Urban Core Areas, which has a mobility target of LOS E or better. The city has also identified strategy corridors throughout the city which are areas where street widening is a not preferred option to address traffic congestion problems. In strategy corridors, the LOS may not meet the adopted standards and mitigation would rely on using different approaches such as transit, bicycle and pedestrian facilities and services to improve operating efficiency. Littlerock Road and Trosper Road, in the vicinity of the project, are identified as strategy corridors with the ability to exceed the adopted standard.

6.1.1 Intersection Operations

For signalized and roundabout (RAB) intersections, the overall LOS grade represents the weighted average of all movements at the intersection. For intersections under minor street stop-sign control, the LOS of the most difficult movement (typically the minor street left turn) represents the intersection level of service. The LOS/delay criteria for stop sign-controlled intersections are different than for signalized intersections because driver expectation is that a signalized intersection is designed to carry higher traffic volumes and experience greater delay.

 Table 4 shows the Level of Service criteria for stop-controlled intersections and signalized intersections.

Level of Service	Signalized/Roundabout Intersection Average Control Delay (seconds/vehicle)	Stop-Controlled Intersection Average Control Delay (seconds/vehicle)
А	≤ 10	≤ 10
В	> 10-20	> 10-15
С	> 20-35	> 15-25
D	> 35-55	> 25-35
E	> 55-80	> 35-50
F	> 80	> 50

Table 4. Level of Service Criteria for Intersections

6.2 Volume to Capacity Ratio

Another measure of the performance of an intersection is the "degree of saturation" which is typically presented as the "volume to capacity" (v/c) ratio. Many factors affect the volume of traffic an intersection can accommodate during a specific time interval. These factors include the number of lanes, lane widths, the type of signal phasing, the number of parking maneuvers on the adjacent street, etc. Based on these factors, the intersection (or individual lane group) is determined to have a total theoretical vehicle carrying capacity "c" for the analysis period. The analysis period volume "v" is compared to the calculated carrying capacity and presented as a ratio. If the v/c ratio is below 1.0, the demand volume is less than the maximum capacity. If the v/c ratio is over 1.0, the demand volume is exceeding the available capacity.

6.3 Intersection Analysis

The analysis was conducted for the following scenarios:

- Existing 2022 traffic volumes
- Projected 2024 traffic volumes without the Project
- Projected 2024 traffic volumes with the Project

The intersection control and channelization are documented earlier in this report in Figure 3. The LOS analysis worksheets are included in **Appendix C.** Following is a description of the Level of Service analysis results for the study intersections with the scenarios listed above.

6.3.1.1 Littlerock Road/Trosper Road/South 2nd Ave

This is a four-legged intersection under traffic signal control. In PM peak hour, the intersection currently operates at a LOS D and is expected to remain at LOS D in the projected 2024 horizon with and without the project traffic.

6.3.1.2 Littlerock Road/Trosper Road/Tyee Drive

This is a four-legged intersection under traffic signal control. In PM peak hour, the intersection currently operates at a LOS D and is expected to operate at LOS E in the projected 2024 horizon with and without the project traffic.

6.3.1.3 Kingswood Drive/Littlerock Road

This is a three-legged intersection under RAB control. In the PM peak hour, the intersection currently operates at LOS A and would remain at LOS A in the projected 2024 horizon year with and without project traffic.

6.3.1.4 Odegard Road/Littlerock Road

This is a three-leg intersection under RAB control. In the PM peak hour, the intersection currently at LOS A and would remain at LOS A in the projected 2024 horizon year with and without project traffic.

6.3.1.5 Littlerock Road/Israel Road

This is a four-leg intersection under RAB control. In the PM peak hour, the intersection currently at LOS A and would remain at LOS A in the projected 2024 horizon year with and without project traffic.

6.3.2 Site Driveway/Littlerock Road

This intersection will be restricted to right-in-right-out and will operate under stop-sign control for the eastbound approach. For the PM peak hour, this intersection is projected to operate at LOS C in the opening year (2024).

The intersection operational results for the PM peak hour are presented in **Table 5**.

_		Base `	Year 2022	Project Withou	ted 2024 It Project	Projected Pro	2024 With oject
Intersection	Control	LOS (Delay)	Worst V/C Ratio	LOS (Delay)	Worst V/C Ratio	LOS (Delay)	Worst V/C Ratio
Littlerock Road/Trosper Road/ South 2 nd Ave	Signal	D (46.5)	0.89	D (47.8)	0.90	D (48.0)	0.90
Trosper Road at I-5 SB Ramps/ Tyee Drive	Signal	D (48.7)	1.03	E (61.5)	1.13	E (63.0)	1.14
Kingswood Drive at Littlerock Road	RAB ¹	A (6.3)	0.61	A (6.5)	0.68	A (6.7)	0.72
Odegard Road at Littlerock Road	RAB ¹	A (4.3)	0.61	A (4.6)	0.69	A (4.8)	0.71
Littlerock Road at Israel Road	RAB ¹	A (2.3)	0.38	A (8.8)	0.69	A (9.0)	0.70
Site Driveway at Littlerock Road	TWSC ²	-	-	-	-	C (19.0)	0.15

Table 5. PM Peak Hour Intersection Operating Conditions

1. Roundabout

2. Two-Way Stop-Control

7 Summary and Conclusions

The Littlerock Road Mixed Use Development is being proposed west of Littlerock Road and immediately north of Tumwater Middle School, near the Littlerock Road/Kingswood Drive Intersection in Tumwater, Washington. The proposed project includes 114 apartment units and approximately 3,800-square feet of general commercial space

Access to the project will be provided by one right-in-right-out driveway onto Littlerock Road. An emergency only access is proposed on the existing private road currently used as the northern Tumwater Middle School driveway.

At full occupancy and operation, the project is estimated to generate approximately 84 new-to network trip ends during the PM peak hour. An evaluation of the existing 2022 and project opening year (2024) with and without the project traffic was performed. All of the study area intersections operate within the LOS threshold.

Impact Fees

The City of Tumwater is currently collecting traffic mitigation fees from new developments to help fund roadway and intersection improvements throughout the City. The project developer will be responsible for a traffic impact fee contribution towards these improvements based on the new PM peak hour traffic generated by the Project. The City has also recently established a SEPA mitigation fee for peak hour trips added to the Tumwater Boulevard interchange. The mitigation fee calculation and SEPA mitigation fee calculation will be prepared by the City of Tumwater.

Appendix A Traffic Volume Counts

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

	Prepared for: SCJ Alliance/Shea Carr Jewell Traffic Count Consultants, Inc. Phone (253) 926-6009 FAX: (253) 922-7211 E-Mail: Team@TC2inc.com WBE/DBE Intersection: 1-5 SB On/Off Ramp/Tyee Dr & Trosper Rd SW Ocation: Tumwater, Washington Tumwater, Washington Date of Count: Versection: Versection: Versection: Versection: Versection: 1-5 SB On/Off Ramp/Type Dr & Trosper Rd SW Ocation: Tumwater, Washington																
Intersecti Location:	ion:	I-5 SB Tumw	On/Off ater, Wa	f Ramp/ ashingto	/Tyee I on	Dr & Tr	osper Rd SV	N				Date of Check	f Cour ed By:	nt:	Wed 3/ Jess	/05/201	4
Time Interval	Frc I-5	m Noi 5 SB Oi	r th on (n/Off Ra	(SB) amp	F	rom S	outh on () Fyee Dr	1B)		From Eas Trosper	t on (WB) Rd SW)	Fro	om We Trospei	st on (l Rd SW	EB)	Interval Total
Ending at	Т	L	S	R	Т	L	S	R	Т	L	S	R	Т	L	S	R	
4:15 P	2	08	93 87	87	1	7	36	71	4	60 55	79 50	46 30	1	30	165	3	713
4:30 P	2	117	67	105	4	6	35	80	0	67	99	42	2	45	156	7	826
5:00 P	0	129	90	97	3	5	41	82	1	65	69	58	4	30	123	6	795
5:15 P	1	115	76	89	2	6	45	84	2	57	81	48	0	35	131	4	771
5:30 P	3	99	94	86	0	8	37	89	2	55	73	43	0	46	130	2	762
5:45 P	4	116	94	75	0	3	42	78	0	48	61	63	0	37	153	8	778
6:00 P	1	105	47	62	0	5	33	102	1	62	65	24	2	40	113	4	662
6:15 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 P 7:00 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.001	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0
Total																	
Survey	19	891	648	715	10	48	300	671	10	469	586	354	9	298	1101	42	6123
					Peak	Hour:	4:30 PM		to	5:30 PM							
Total	6	460	327	377	9	25	158	335	5	244	322	191	6	156	540	19	3154
Approach			1164				518				757				715		3154
%HV			0.5%				1.7%				0.7%				0.8%		0.8%
PHF			0.92				0.96				0.91				0.86		0.95
		Tros	per Ro	d SW	2	377	I-5 SB 1164 327	On/Of 460	f Ram 1669	505	Bike Ped	191	Tros	per R	d SW		[
PEDs	N	1439	715	Bike	0 156 540 19	Ded	4:30 PM	to	25	5:30 PM	225	<u>322</u> 244 1 0	Bike Ped	1335	2092	1	
Across: INT 01	3	8	E		3	Bike	10		25	158	335		5504	1.0 PT	іг геак	PHF	%HV
INT 02	1	1		1	3	Bille					_				EB	0.86	0.8%
INT 03	1	3		1	5		590			518			Check		WB	0.91	0.7%
INT 04		5			5					T			In:	3154	NB	0.96	1.7%
INT 05	1	2		1	4		,	Tvee D	1108 r	l			Out:	3154	SB T Int	0.92	0.5%
INT 00	1	1			2	Bicy	cles From:	N N	s	E	w		Condit	ions:]	0.95	0.870
INT 08					0		INT 01					0			-		
INT 10					0		INT 03					0					
INT 11 INT 12 Special No	8 tes	12	0	3	0 0 23		INT 04 INT 05 INT 06 INT 07 INT 07 INT 08 INT 09 INT 10			1							
							INT 11					0					
							INT 12	0	1	1	0	2					
										-		-				SCJ1	4026M_03p

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Traffic Count Consultants, Inc.

Phone: (253) 926-6009 FAX: (253) 922-7211 E-Mail: Team@TC2inc.com

	WBE/DBE																
Intersecti	ion:	Littler	ock Rd S	SW & (Odegar	l Rd SV	N					Date o	f Cour	ıt:	Wed 6	/24/201	5
Location	:	Tumw	vater, Wa	shingto	on							Check	ed By:		Jess		
Time	Fre	m No	rth on (SB)	F	rom S	outh on (N	IB)		From Eas	t on (WB)		Fro	om We	st on (l	EB)	Interval
Interval Ending at	T	Littlero	ck Rd SV	N R	т	Little	rock Rd SW	P	т	Odegard	Rd SW	P	т	(T)	P	Total
4.15 P	0	1	151	0	2	0	134	1	0	1	0	0	0	0	0	0	288
4.10 P	1	0	184	0	0	0	126	0	0	0	0	1	0	0	0	0	311
4:45 P	1	2	164	0	1	0	160	0	0	3	0	2	0	0	0	0	331
5:00 P	2	0	158	0	0	0	125	3	0	2	0	1	0	0	0	0	289
5:15 P	0	3	161	0	1	0	174	0	0	5	0	2	0	0	0	0	345
5:30 P	1	3	185	0	0	0	162	0	0	5	0	0	0	0	0	0	355
5:45 P	0	3	173	0	2	0	138	0	0	2	0	1	0	0	0	0	317
6:00 P	2	1	149	0	0	0	91	1	0	3	0	0	0	0	0	0	245
6:15 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total																	
Survey	7	13	1325	0	6	0	1110	5	0	21	0	7	0	0	0	0	2481
					Peak	Hour:	4:30 PM		to	5:30 PM							
Total	4	8	668	0	2	0	621	3	0	15	0	5	0	0	0	0	1320
Approach			676				624				20				0		1320
%HV			0.6%				0.3%				n/a				n/a		0.5%
PHF			0.90				0.90				0.71				n/a		0.93
PEDS Across: INT 01 INT 02 INT 03 INT 04 INT 05	N	s	E 1 1	W	0 0 0 0 0 1 0 0 1 1	Ped Bike	668 4:30 PM 1 	to	1307 cd SW	<u>1</u> 0 5:30 PM 621 624	Bike Ped	5 0 1	Odeg Bike Ped 1420 Check In: Out:	20 20 11 1.0 Ph 1320 1320	d SW 31 <i>IF Peak</i> B WB NB SB T Int.	Hour PHF 0.71 0.90 0.90 0.93	Volume %HV <u>n/a</u> 0.3% 0.6% 0.5%
INT 07					0	Bicy	cles From:	Ν	S	E	w	1	Condi	tions:]		
INT 08 INT 09 INT 10 INT 11 INT 12 Special No	0 otes	1	2	0	0 0 0 3		INT 01 INT 02 INT 03 INT 04 INT 05 INT 06 INT 07 INT 08 INT 09 INT 10 INT 11 INT 12	6 2 1 1	4 1 1 1 1 7	0	0	6 6 1 0 1 2 0 0 0 0 1 7			-		
I																SCJ1	15075M 16p

Traffic Count Consultants, Inc.

Phone: (253) 770-1407 FAX: (253) 770-1411 E-Mail: Team@TC2inc.com

Appendix B

Traffic Volume Calculation Worksheets

Littlerock Road Mixed Use

Trip Generation

PM Peak Hour Trip Generation	Peak Hour Trip Generation																
Site Blan Description		ITE Description	Variable	Value	Trip Pata	Distri	bution		Total Trips		Int. Ca	apture	Pass-B	y Trips		Net New Trip	s
Site Fian Description	100	The Description	variable	value	пр касе	In	Out	In	Out	Total	%	Total	%	Total	In	Out	Total
Apartments	220	Multifamily Housing (Low-Rise) Not Close to Rail Transit	Dwelling Units	114.0	0.51	63%	37%	37	21	58	0	0	0.0%	0	37	21	58
General Commercial	822	Strip Retail Plaza	ksqft	3.800	10.31	50%	50%	19	20	39	0	0	34.0%	13	13	13	26
Total								56	41	97		0		13	50	34	84
	822 Fitted Curve Equation 10.31																

822 Fitted Curve Equation

Alvi Peak Hour Trip Generation	a reak hour inp Generation																
Site Plan Description	1	ITE Description	Variable	Value	Trin Poto	Distri	bution		Total Trips		Int. C	apture	Pass-B	Sy Trips		Net New Trips	5
		The Description	variable	value	TTP Kate	In	Out	In	Out	Total	%	Total	%	Total	In	Out	Total
Apartments	220	Multifamily Housing (Low-Rise) Not Close to Rail Transit	Dwelling Units	114.0	0.40	26%	74%	12	34	46	0%	0	0.0%	0	12	34	46
General Commercial	822	Strip Retail Plaza	ksqft	3.800	2.36	60%	40%	5	4	9	0%	0	0.0%	0	5	4	9
Total								17	38	55		0		0	17	38	55

Daily Trip Generation	ly Trip Generation																
Site Plan Description		ITE Description	Variable	Value	Trin Poto	Distri	bution		Total Trips		Int. Ca	apture	Pass-B	y Trips		Net New Trips	\$
	100	The Description	variable	value	TTP Kate	In	Out	In	Out	Total	%	Total	%	Total	In	Out	3
Apartments	220	Multifamily Housing (Low-Rise) Not Close to Rail Transit	Dwelling Units	114.0	6.74	50%	50%	384	384	768	0%	0	0.0%	0	384	384	768
General Commercial	822	Strip Retail Plaza	ksqft	3.800	54.45	50%	50%	103	104	207	0%	0	34.0%	70	68	69	137
Total								487	488	975		0		70	452	453	905

Littlerock Road Mixed Use

CONSULTING SERVICES

PM Peak Hour Volumes Covid Adjustment Rate: 10% Growth Rate: 4.00%

			Existing	Adjusted	Background	Bishop Rd	Israel Storage	Trosper Woods	Baseline	Site	Site	Site	Projected
Intersection	Move	ement	2022	2022	2024	Pipeline	Pipeline	Pipeline	2024	Generated	Generated	Generated	2024
			Volumes	Volumes	Growth	Volumes	Volumes	Volumes	Volumes	Pass-By	Primary	Total	Volumes
		L	45	50	4	0	0	0	54	0	0	0	54
	EB	Т	264	290	23	0	0	0	313	0	0	0	313
		R	165	182	15	0	0	0	197	0	1	1	198
1		L	294	323	26	0	0	0	349	0	19	19	368
Trosper Road	WB	Т	323	355	28	0	0	0	383	0	0	0	383
Littlerock Road		R	51	56	4	0	0	0	60	0	0	0	60
		L	184	202	16	0	0	0	218	0	1	1	219
TMC Date: 04/28/2022	NB	Т	223	245	20	0	0	0	265	0	4	4	269
		R	427	470	38	0	0	0	508	0	12	12	520
4:15 - 5:15		L	98	108	9	0	0	0	117	0	0	0	117
PHF: 0.93	SB	Т	248	273	22	0	0	0	295	0	6	6	301
		R	26	29	2	0	0	0	31	0	0	0	31
			2,348	2,583					2,790				2,833
		L	0	188	15	0	0	0	203	0	0	0	203
	EB	Т	0	656	52	0	0	6	714	0	12	12	726
		R	0	22	2	0	0	0	24	0	0	0	24
2		L	0	278	22	0	0	0	300	0	0	0	300
Trosper Road	WB	Т	0	342	27	0	0	3	372	0	3	3	375
I-5 SB Ramps/Tyee Dr		R	0	218	17	0	0	0	235	0	0	0	235
		L	0	29	2	0	0	0	31	0	0	0	31
	NB	Т	0	180	14	0	0	0	194	0	0	0	194
		R	0	382	31	0	0	7	420	0	0	0	420
		L	0	524	42	0	0	0	566	0	0	0	566
	SB	Т	0	373	30	0	0	0	403	0	0	0	403
		R	0	370	30	0	0	0	400	0	16	16	416
			0	3,562					3,862				3,893
		L	0	0	0	0	0	0	0	0	0	0	0
	EB	Т	0	0	0	0	0	0	0	0	0	0	0
		R	0	0	0	0	0	0	0	0	0	0	0
		U	1	1	0	0	0	0	1	0	0	0	1
3	WB	L	49	204	16	4	0	0	224	0	0	0	224
Kingswood Drive		Т	0	0	0	0	0	0	0	0	0	0	0
Littlerock Road		R	91	100	8	0	0	0	108	0	0	0	108
		U	25	28	2	0	0	0	30	0	19	19	49
	NB	L	0	0	0	0	0	0	0	0	0	0	0
TMC Date: 04/28/2022		Т	345	580	46	16	1	2	645	0	21	21	666
		R	77	135	11	2	0	0	148	0	0	0	148
		U	7	8	1	0	0	0	9	0	0	0	9
4:15 - 5:15	SB	L	83	91	7	0	0	0	98	0	0	0	98
PHF: 0.91	-	Т	419	561	45	25	1	2	634	0	30	30	664
		R	0	0	0	0	0	0	0	0	0	0	0
			1,097	1,707					1,896				1,966

Littlerock Road Mixed Use

PM Peak Hour Volumes Covid Adjustment Rate: 10% Growth Rate: 4.00%

			Existing	Adjusted	Background	Bishop Rd	Israel Storage	Trosper Woods	Baseline	Site	Site	Site	Projected
Intersection	Move	ement	2022	2022	2024	Pipeline	Pipeline	Pipeline	2024	Generated	Generated	Generated	2024
			Volumes	Volumes	Growth			Volumes	Volumes	Pass-By	Primary	Total	Volumes
		L	0	0	0	0	0	0	0	0	0	0	0
	EB	Т	0	0	0	0	0	0	0	0	0	0	0
		R	0	0	0	0	0	0	0	0	0	0	0
4		L	0	17	1	6	0	0	24	0	0	0	24
Odegard Road	WB	Т	0	0	0	0	0	0	0	0	0	0	0
Littlerock Road		R	0	6	0	2	0	0	8	0	1	1	9
		L	0	0	0	0	0	0	0	0	0	0	0
	NB	Т	0	733	59	0	1	2	795	0	19	19	814
		R	0	3	0	9	0	0	12	0	0	0	12
		U	0	0	0	0	0	0	0	0	21	21	21
	SB	L	0	9	1	29	0	0	39	0	0	0	39
	55	т	0	785	63	0	1	1	850	0	13	13	863
		R	0	0	0	0	0	0	0	0	0	0	0
			0	1,552					1,727				1,781
		L	53	108	9	0	0	2	119	0	1	1	120
	EB	Т	88	97	8	0	1	0	106	0	0	0	106
		R	142	156	12	0	0	0	168	0	0	0	168
5		L	85	94	0	0	1	0	95	0	0	0	95
Israel Rd/70th Ave	WB	Т	151	166	13	0	1	0	180	0	0	0	180
Littlerock Road		R	94	278	22	0	1	3	304	0	10	10	314
		L	174	191	15	0	0	0	206	0	0	0	206
TMC Date: 07/26/2022	NB	Т	199	394	0	0	0	1	395	0	8	8	403
		R	58	64	5	0	1	0	70	0	0	0	70
		L	67	174	14	0	1	2	191	0	7	7	198
4:30 - 5:30	SB	Т	306	412	0	0	0	0	412	0	5	5	417
PHF: 0.95		R	68	150	12	0	0	1	163	0	1	1	164
			1,485	2,284					2,409				2,441
		L	0	0	0	0	0	0	0	0	0	0	0
	EB	Т	0	0	0	0	0	0	0	0	0	0	0
		R	0	0	0	0	0	0	0	6	34	40	40
6		L	0	0	0	0	0	0	0	0	0	0	0
Site Driveway	WB	Т	0	0	0	0	0	0	0	0	0	0	0
Littlerock Road		R	0	0	0	0	0	0	0	0	0	0	0
		L	0	0	0	0	0	0	0	0	0	0	0
TMC Date: 04/28/2022	NB	Т	447	742	59	18	1	2	822	0	40	40	862
		R	0	0	0	0	0	0	0	0	0	0	0
4:15 - 5:15		L	0	0	0	0	0	0	0	0	0	0	0
	SB	Т	493	792	63	29	1	2	887	-7	0	-7	880
		R	0	0	0	0	0	0	0	7	49	56	56
			940	1,534					1,709				1,838

Appendix C Capacity Analysis Worksheets

Lanes, Volumes, Timings 1: Littlerock Rd/2nd Ave & Trosper Rd

	۶	+	\rightarrow	4	+	*	≺	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜î ≽		ሻ	el îr		1	•	1	ሻ	A1⊅	
Traffic Volume (vph)	50	290	180	325	355	55	200	245	470	110	275	30
Future Volume (vph)	50	290	180	325	355	55	200	245	470	110	275	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	150		0	250		0	150		250
Storage Lanes	1		0	1		0	1		1	2		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		528			484			673			312	
Travel Time (s)		14.4			13.2			15.3			8.5	
Turn Type	Split	NA		Split	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	4	4		8	8		5	2	8	1	6	
Permitted Phases									2			
Detector Phase	4	4		8	8		5	2	8	1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	35.6	35.6		33.6	33.6		24.5	30.6	33.6	8.6	31.6	
Total Split (s)	36.0	36.0		37.0	37.0		29.0	42.0	37.0	20.0	33.0	
Total Split (%)	26.7%	26.7%		27.4%	27.4%		21.5%	31.1%	27.4%	14.8%	24.4%	
Maximum Green (s)	31.4	31.4		32.4	32.4		24.4	37.4	32.4	15.4	28.4	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.6	4.6	4.6	4.6	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.5	2.5		3.0	3.0		3.0	2.5	3.0	3.0	2.5	
Recall Mode	None	None		C-Max	C-Max		None	None	C-Max	None	None	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	
Flash Dont Walk (s)	25.0	25.0		23.0	23.0			20.0	23.0		21.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	
Intersection Summary												
Area Type: O	ther											
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 46 (34%), Referenced	to phase	8:WBTL,	Start of	Green								
Natural Cycle: 130												
Control Type: Actuated-Coord	dinated											

Splits and Phases: 1: Littlerock Rd/2nd Ave & Trosper Rd

Ø1	Ø2	4 ₀₄	₩Ø8 (R)
20 s	42 s	36 s	37 s
Ø 5	↓ Ø6		
29 s	33 s		

Littlerock Road Mixed Use SCJ Alliance

HCM 6th Signalized Intersection Summary 1: Littlerock Rd/2nd Ave & Trosper Rd

	۶	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ ⊅		<u>۲</u>	ፋጉ		<u>٦</u>	↑	1	ሻ	≜ ⊅	
Traffic Volume (veh/h)	50	290	180	325	355	55	200	245	470	110	275	30
Future Volume (veh/h)	50	290	180	325	355	55	200	245	470	110	275	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	54	312	194	263	502	59	215	263	505	118	296	32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	516	615	373	431	795	93	242	485	793	143	658	70
Arrive On Green	0.29	0.29	0.29	0.24	0.24	0.24	0.13	0.26	0.26	0.08	0.20	0.20
Sat Flow, veh/h	1795	2141	1299	1795	3312	388	1795	1885	1592	1795	3262	350
Grp Volume(v), veh/h	54	260	246	263	285	276	215	263	505	118	161	167
Grp Sat Flow(s),veh/h/ln	1795	1791	1650	1795	1885	1814	1795	1885	1592	1795	1791	1820
Q Serve(g_s), s	3.0	16.3	16.9	17.6	18.3	18.4	15.9	16.3	31.5	8.7	10.7	10.9
Cycle Q Clear(g_c), s	3.0	16.3	16.9	17.6	18.3	18.4	15.9	16.3	31.5	8.7	10.7	10.9
Prop In Lane	1.00		0.79	1.00		0.21	1.00		1.00	1.00		0.19
Lane Grp Cap(c), veh/h	516	514	474	431	452	435	242	485	793	143	361	367
V/C Ratio(X)	0.10	0.50	0.52	0.61	0.63	0.63	0.89	0.54	0.64	0.83	0.45	0.45
Avail Cap(c_a), veh/h	516	514	474	431	452	435	325	522	824	205	377	383
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.74	0.74	0.74	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.4	40.1	40.3	45.7	45.9	46.0	57.4	43.3	25.0	61.2	47.3	47.4
Incr Delay (d2), s/veh	0.1	0.6	0.8	4.7	4.9	5.1	19.9	0.7	1.4	16.7	0.6	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.3	7.4	1.1	8.5	9.3	9.0	8.6	1.1	17.8	4.7	4.9	5.1
Unsig. Movement Delay, s/veh	05.4	40 7		50.4		- 4 4	0		00 4	70.0	47.0	10.0
LnGrp Delay(d),s/veh	35.4	40.7	41.1	50.4	50.8	51.1	//.3	44.0	26.4	/8.0	47.9	48.0
LnGrp LOS	D	D	D	D	D	D	E	D	C	E	D	<u> </u>
Approach Vol, veh/h		560			824			983			446	
Approach Delay, s/veh		40.4			50.8			42.2			55.9	
Approach LOS		D			D			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	15.3	39.3		43.4	22.8	31.8		37.0				
Change Period (Y+Rc), s	4.6	4.6		4.6	4.6	4.6		4.6				
Max Green Setting (Gmax), s	15.4	37.4		31.4	24.4	28.4		32.4				
Max Q Clear Time (g_c+l1), s	10.7	33.5		18.9	17.9	12.9		20.4				
Green Ext Time (p_c), s	0.1	1.2		2.3	0.3	1.4		3.6				
Intersection Summary												
HCM 6th Ctrl Delay			46.5									
HCM 6th LOS			D									

Notes

User approved volume balancing among the lanes for turning movement.

Lanes, Volumes, Timings 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

	≯	-	$\mathbf{\hat{v}}$	4	←	•	•	Ť	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	≜î ≽		ľ	•	1	ካካ	†	7
Traffic Volume (vph)	190	655	20	280	340	220	30	180	380	525	375	370
Future Volume (vph)	190	655	20	280	340	220	30	180	380	525	375	370
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		150	350		0	100		0	0		0
Storage Lanes	1		1	1		0	1		1	2		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			25			30	
Link Distance (ft)		484			643			746			574	
Travel Time (s)		13.2			17.5			20.3			13.0	
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	pt+ov	Split	NA	Perm
Protected Phases	7	4		3	8		2	2	23	6	6	
Permitted Phases			4									6
Detector Phase	7	4	4	3	8		2	2	23	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0		20.0	20.0		20.0	20.0	20.0
Total Split (s)	19.0	20.0	20.0	20.0	21.0		20.0	20.0		26.0	26.0	26.0
Total Split (%)	22.1%	23.3%	23.3%	23.3%	24.4%		23.3%	23.3%		30.2%	30.2%	30.2%
Maximum Green (s)	15.0	16.0	16.0	16.0	17.0		16.0	16.0		22.0	22.0	22.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max		Max	Max		None	None	None
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	0
Intersection Summary												
Area Type:	Other											
Cycle Length: 86												
Actuated Cycle Length: 86												
Offset: 38 (44%), Reference	ed to phase	e 4:EBT a	nd 8:WB	T, Start o	f Green							
Natural Cycle: 90												
Control Type: Actuated-Co	ordinated											

Splits and Phases: 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

↓ _{Ø2}	Ø6	→ Ø4 (R)	€ ¶Ø3
20 s	26 s	20 s	20 s
			< Ø8 (R)
		19 s	21 s

	۶	→	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	* *	1	5	≜ 15		ሻ	•	1	ካካ	•	1
Traffic Volume (veh/h)	190	655	20	280	340	220	30	180	380	525	375	370
Future Volume (veh/h)	190	655	20	280	340	220	30	180	380	525	375	370
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1885	1885	1885
Adj Flow Rate, veh/h	200	689	21	295	358	0	32	189	400	553	395	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	1	1	1
Cap, veh/h	239	666	297	335	859		331	348	591	596	481	
Arrive On Green	0.13	0.19	0.19	0.19	0.24	0.00	0.19	0.19	0.19	0.26	0.26	0.00
Sat Flow, veh/h	1795	3582	1598	1795	3676	0	1781	1870	1585	2334	1885	1598
Grp Volume(v), veh/h	200	689	21	295	358	0	32	189	400	553	395	0
Grp Sat Flow(s),veh/h/ln	1795	1791	1598	1795	1791	0	1781	1870	1585	1167	1885	1598
Q Serve(g_s), s	9.3	16.0	0.9	13.8	7.3	0.0	1.3	7.9	2.2	19.9	17.0	0.0
Cycle Q Clear(g_c), s	9.3	16.0	0.9	13.8	7.3	0.0	1.3	7.9	2.2	19.9	17.0	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	239	666	297	335	859		331	348	591	596	481	
V/C Ratio(X)	0.84	1.03	0.07	0.88	0.42		0.10	0.54	0.68	0.93	0.82	
Avail Cap(c_a), veh/h	313	666	297	335	859		331	348	591	597	482	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.72	0.72	0.72	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.4	35.0	28.9	34.0	27.6	0.0	29.0	31.7	22.6	31.3	30.2	0.0
Incr Delay (d2), s/veh	10.6	38.7	0.3	22.6	1.5	0.0	0.6	6.0	6.1	21.0	10.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.8	10.4	0.4	8.0	3.3	0.0	0.6	4.1	7.6	7.1	8.9	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	47.0	73.7	29.2	56.6	29.1	0.0	29.6	37.7	28.8	52.2	41.0	0.0
LnGrp LOS	D	F	С	E	С		С	D	С	D	D	
Approach Vol, veh/h		910			653	А		621			948	A
Approach Delay, s/veh		66.8			41.5			31.5			47.6	
Approach LOS		E			D			С			D	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		20.0	20.1	20.0		25.9	15.4	24.6				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		16.0	16.0	16.0		22.0	15.0	17.0				
Max Q Clear Time (g_c+l1), s		9.9	15.8	18.0		21.9	11.3	9.3				
Green Ext Time (p_c), s		1.5	0.0	0.0		0.1	0.2	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			48.7									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

MOVEMENT SUMMARY V Site: 2 [Existing 2022 (Site Folder: General)]

Kingswood Dr at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU	UT MES	DEM/ FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	95% BA QUI	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	нvј %	veh/h	∺vj %	v/c	sec		ven. veh	ft		Rale	Cycles	mph
South	n: NB Li	ittlerock F	٦d											
3u	U	30	1.0	32	1.0	0.612	12.8	LOS B	5.4	137.1	0.46	0.49	0.46	37.0
8	T1	580	1.0	624	1.0	0.612	4.9	LOS A	5.4	137.1	0.46	0.49	0.46	36.2
18	R2	135	1.0	145	1.0	0.612	4.9	LOS A	5.4	137.1	0.46	0.49	0.46	35.1
Appro	bach	745	1.0	801	1.0	0.612	5.2	LOS A	5.4	137.1	0.46	0.49	0.46	36.0
East:	WB Kir	ngswood	Dr											
1u	U	5	1.0	5	1.0	0.209	14.7	LOS B	1.4	35.4	0.70	0.76	0.70	33.9
1	L2	205	1.0	220	1.0	0.209	12.3	LOS B	1.4	35.4	0.70	0.76	0.70	33.2
16	R2	100	1.0	108	1.0	0.065	4.2	LOS A	0.0	0.0	0.00	0.49	0.00	36.5
Appro	bach	310	1.0	333	1.0	0.209	9.8	LOS A	1.4	35.4	0.47	0.67	0.47	34.2
North	: SB Lit	ttlerock R	ld											
7u	U	10	1.0	11	1.0	0.112	13.3	LOS B	0.6	14.0	0.43	0.67	0.43	34.4
7	L2	90	1.0	97	1.0	0.112	10.9	LOS B	0.6	14.0	0.43	0.67	0.43	33.7
4	T1	560	1.0	602	1.0	0.426	5.1	LOS A	3.1	77.2	0.51	0.50	0.51	36.0
Appro	bach	660	1.0	710	1.0	0.426	6.0	LOS A	3.1	77.2	0.50	0.53	0.50	35.7
All Ve	hicles	1715	1.0	1844	1.0	0.612	6.3	LOS A	5.4	137.1	0.48	0.54	0.48	35.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Wednesday, August 24, 2022 11:42:23 AM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Kingswood at Littlerock.sip9

MOVEMENT SUMMARY V Site: 4 [Existing 2022 (Site Folder: General)]

Odegard Rd at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU	UT MES	DEM/ FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	95% BA QUI	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	пvј %	veh/h	⊓vj %	v/c	sec		ven. veh	ft		Rale	Cycles	mph
South	n: NB L	ittlerock F	٦d											
3u	U	5	1.0	5	1.0	0.566	12.1	LOS B	4.7	118.0	0.15	0.38	0.15	38.3
8	T1	735	1.0	790	1.0	0.566	4.1	LOS A	4.7	118.0	0.15	0.38	0.15	37.3
18	R2	5	1.0	5	1.0	0.566	4.1	LOS A	4.7	118.0	0.15	0.38	0.15	36.2
Appro	bach	745	1.0	801	1.0	0.566	4.2	LOS A	4.7	118.0	0.15	0.38	0.15	37.3
East:	WB Oo	degard Ro	d											
1u	U	1	1.0	1	1.0	0.013	12.0	LOS B	0.0	0.0	0.00	0.65	0.00	36.2
1	L2	15	1.0	16	1.0	0.013	9.6	LOS A	0.0	0.0	0.00	0.65	0.00	35.4
16	R2	5	1.0	5	1.0	0.013	4.0	LOS A	0.0	0.0	0.00	0.65	0.00	34.4
Appro	bach	21	1.0	23	1.0	0.013	8.4	LOS A	0.0	0.0	0.00	0.65	0.00	35.2
North	: SB Li	ttlerock R	ld											
7u	U	5	1.0	5	1.0	0.610	12.2	LOS B	5.2	131.4	0.18	0.39	0.18	38.1
7	L2	10	1.0	11	1.0	0.610	9.8	LOS A	5.2	131.4	0.18	0.39	0.18	37.2
4	T1	785	1.0	844	1.0	0.610	4.2	LOS A	5.2	131.4	0.18	0.39	0.18	37.2
Appro	bach	800	1.0	860	1.0	0.610	4.3	LOS A	5.2	131.4	0.18	0.39	0.18	37.2
All Ve	hicles	1566	1.0	1684	1.0	0.610	4.3	LOS A	5.2	131.4	0.16	0.39	0.16	37.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Wednesday, August 24, 2022 11:36:04 AM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Odegard at Littlerock.sip9

MOVEMENT SUMMARY V Site: 1 [Existing 2022 (Site Folder: General)]

PM Peak Hour Israel Rd at Littlerock Rd Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov	Turn	INP	UT	DEM.	AND	Deg.	Aver.	Level of	95% BA	ACK OF	Prop. E	Effective	Aver.	Aver.
ID		VOLU Total		FLO [Total	WS LIVI	Satn	Delay	Service		EUE Diet 1	Que	Stop	NO.	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	ft		Trate	Cycles	mph
South	n: NB Li	ittlerock I	Rd											
3	L2	175	1.0	184	1.0	0.383	10.7	LOS B	2.3	58.9	0.45	0.61	0.45	35.2
8	T1	200	1.0	211	1.0	0.383	5.3	LOS A	2.3	58.9	0.45	0.61	0.45	35.3
18	R2	60	1.0	63	1.0	0.383	5.3	LOS A	2.3	58.9	0.45	0.61	0.45	34.3
Appro	bach	435	1.0	458	1.0	0.383	7.5	LOS A	2.3	58.9	0.45	0.61	0.45	35.1
East:	WB Isr	ael Rd												
1	L2	85	1.0	89	1.0	0.197	11.2	LOS B	1.2	30.8	0.56	0.63	0.56	35.0
6	T1	150	1.0	158	1.0	0.197	5.8	LOS A	1.2	30.8	0.56	0.63	0.56	35.0
16	R2	95	1.0	100	1.0	0.071	4.7	LOS A	0.4	9.4	0.39	0.51	0.39	35.8
Appro	bach	330	1.0	347	1.0	0.197	6.9	LOS A	1.2	30.8	0.51	0.60	0.51	35.2
North	: SB Li	ttlerock F	۶d											
7	L2	65	1.0	68	1.0	0.203	11.6	LOS B	1.2	29.2	0.56	0.66	0.56	34.8
4	T1	305	1.0	321	1.0	0.203	6.3	LOS A	1.2	30.8	0.55	0.62	0.55	35.3
14	R2	70	1.0	74	1.0	0.203	6.0	LOS A	1.2	30.8	0.54	0.59	0.54	34.6
Appro	bach	440	1.0	463	1.0	0.203	7.0	LOS A	1.2	30.8	0.55	0.63	0.55	35.1
West	EB 70	th Ave												
5	L2	55	1.0	58	1.0	0.137	10.7	LOS B	0.6	14.2	0.44	0.62	0.44	35.1
2	T1	90	1.0	95	1.0	0.137	5.6	LOS A	0.6	14.2	0.44	0.62	0.44	35.1
12	R2	140	1.0	147	1.0	0.128	5.2	LOS A	0.5	12.9	0.41	0.60	0.41	35.5
Appro	bach	285	1.0	300	1.0	0.137	6.4	LOS A	0.6	14.2	0.42	0.61	0.42	35.3
All Ve	hicles	1490	1.0	1568	1.0	0.383	7.0	LOS A	2.3	58.9	0.49	0.61	0.49	35.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Tuesday, December 6, 2022 3:40:36 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Israel at Littlerock.sip9

Lanes, Volumes, Timings 1: Littlerock Rd/2nd Ave & Trosper Rd

	≯	-	\mathbf{F}	4	+	*	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ 16		5	đ î ja		۲	•	1	<u>۲</u>	≜1 ≽	
Traffic Volume (vph)	55	315	195	350	385	60	220	265	510	115	295	30
Future Volume (vph)	55	315	195	350	385	60	220	265	510	115	295	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	150		0	250		0	150		250
Storage Lanes	1		0	1		0	1		1	2		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		528			484			673			312	
Travel Time (s)		14.4			13.2			15.3			8.5	
Turn Type	Split	NA		Split	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	4	4		8	8		5	2	8	1	6	
Permitted Phases									2			
Detector Phase	4	4		8	8		5	2	8	1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	35.6	35.6		33.6	33.6		24.5	30.6	33.6	8.6	31.6	
Total Split (s)	36.0	36.0		37.0	37.0		29.0	42.0	37.0	20.0	33.0	
Total Split (%)	26.7%	26.7%		27.4%	27.4%		21.5%	31.1%	27.4%	14.8%	24.4%	
Maximum Green (s)	31.4	31.4		32.4	32.4		24.4	37.4	32.4	15.4	28.4	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.6	4.6	4.6	4.6	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.5	2.5		3.0	3.0		3.0	2.5	3.0	3.0	2.5	
Recall Mode	None	None		C-Max	C-Max		None	None	C-Max	None	None	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	
Flash Dont Walk (s)	25.0	25.0		23.0	23.0			20.0	23.0		21.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 46 (34%), Reference	d to phase	8:WBTL,	Start of 0	Green								
Natural Cycle: 130												
Control Type: Actuated-Coo	rdinated											

Splits and Phases: 1: Littlerock Rd/2nd Ave & Trosper Rd

Ø1	Ø2	4 _{Ø4}	📕 🕶 Ø8 (R)
20 s	42 s	36 s	37 s
▲ Ø5	↓ Ø6		
29 s	33 s		

Littlerock Road Mixed Use SCJ Alliance

	۶	-	\mathbf{r}	•	-	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	A		۲	đÞ.		٦	†	1	٦	A	
Traffic Volume (veh/h)	55	315	195	350	385	60	220	265	510	115	295	30
Future Volume (veh/h)	55	315	195	350	385	60	220	265	510	115	295	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	59	339	210	285	541	65	237	285	548	124	317	32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	481	573	348	431	793	95	263	515	818	149	687	69
Arrive On Green	0.27	0.27	0.27	0.24	0.24	0.24	0.15	0.27	0.27	0.08	0.21	0.21
Sat Flow, veh/h	1795	2141	1300	1795	3303	396	1795	1885	1592	1795	3286	329
Grp Volume(v), veh/h	59	282	267	285	308	298	237	285	548	124	172	177
Grp Sat Flow(s),veh/h/ln	1795	1791	1650	1795	1885	1813	1795	1885	1592	1795	1791	1824
Q Serve(g s), s	3.4	18.5	19.0	19.4	20.0	20.2	17.5	17.5	34.5	9.2	11.3	11.5
Cycle Q Clear(q c), s	3.4	18.5	19.0	19.4	20.0	20.2	17.5	17.5	34.5	9.2	11.3	11.5
Prop In Lane	1.00		0.79	1.00		0.22	1.00		1.00	1.00		0.18
Lane Grp Cap(c), veh/h	481	480	442	431	452	435	263	515	818	149	374	381
V/C Ratio(X)	0.12	0.59	0.60	0.66	0.68	0.68	0.90	0.55	0.67	0.83	0.46	0.46
Avail Cap(c a), veh/h	481	480	442	431	452	435	325	522	825	205	377	384
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.68	0.68	0.68	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.4	43.0	43.2	46.3	46.6	46.7	56.6	42.0	24.4	61.0	46.7	46.8
Incr Delay (d2), s/veh	0.1	1.6	2.0	5.4	5.6	5.9	23.3	1.0	1.9	18.6	0.7	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.5	8.5	8.1	9.4	10.2	9.9	9.7	8.3	19.4	5.0	5.2	5.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	37.5	44.6	45.2	51.7	52.2	52.5	79.9	43.1	26.3	79.6	47.4	47.4
LnGrp LOS	D	D	D	D	D	D	E	D	С	E	D	D
Approach Vol. veh/h		608			891			1070			473	
Approach Delay, s/veh		44.2			52.1			42.7			55.8	
Approach LOS		D			D			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Physical Ph	15.8	/1 5		10.8	24.4	32.8		37.0				
Change Period (V+Rc), s	10.0	41.5		40.0	4.4	16		16				
Max Green Setting (Gmax) s	15./	37 /		31 /	24.4	28./		32 /				
Max O Clear Time $(q, c+11)$ s	11.7	36.5		21.4	10.5	13.5		22.4				
Green Ext Time (p, c) s	0.1	0.0		∠1.0 2 3	03	15.5		22.2				
	0.1	0.4		2.5	0.5	1.0		5.5				
Intersection Summary												
HCM 6th Ctrl Delay			47.8									
HCM 6th LOS			D									

Notes

User approved volume balancing among the lanes for turning movement.

Lanes, Volumes, Timings 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

	٦	-	\mathbf{r}	4	+	*	1	1	۲	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	<u>††</u>	1	<u>۲</u>	∱ î≽		۲	†	1	ካካ	1	1
Traffic Volume (vph)	205	715	25	300	370	235	30	195	420	565	405	400
Future Volume (vph)	205	715	25	300	370	235	30	195	420	565	405	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		150	350		0	100		0	0		0
Storage Lanes	1		1	1		0	1		1	2		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			25			30	
Link Distance (ft)		484			643			746			574	
Travel Time (s)		13.2			17.5			20.3			13.0	
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	pt+ov	Split	NA	Perm
Protected Phases	7	4		3	8		2	2	23	6	6	
Permitted Phases			4									6
Detector Phase	7	4	4	3	8		2	2	23	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0		20.0	20.0		20.0	20.0	20.0
Total Split (s)	19.0	20.0	20.0	20.0	21.0		20.0	20.0		26.0	26.0	26.0
Total Split (%)	22.1%	23.3%	23.3%	23.3%	24.4%		23.3%	23.3%		30.2%	30.2%	30.2%
Maximum Green (s)	15.0	16.0	16.0	16.0	17.0		16.0	16.0		22.0	22.0	22.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max		Max	Max		None	None	None
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0	0	0	0		0	0		0	0	0
Intersection Summary												
Area Type:	Other											
Cycle Length: 86												
Actuated Cycle Length: 8	ô											
Offset: 38 (44%), Referenced to phase 4:EBT and 8:WBT, Start of Green												
Natural Cycle: 90												
Control Type: Actuated-Coordinated												

Splits and Phases: 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

↓ _{Ø2}	Ø6	₩Ø4 (R)	6 03									
20 s	26 s	20 s	20 s									
			< Ø8 (R)									
		19 s	21 s									
	≯	-	\mathbf{r}	•	-	•	1	1	1	1	Ŧ	~
------------------------------	------	----------	--------------	------	-------------	------	------	------	------	------	------	------
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	^	1	ň	41 2		۲	•	1	ሻሻ	•	1
Traffic Volume (veh/h)	205	715	25	300	370	235	30	195	420	565	405	400
Future Volume (veh/h)	205	715	25	300	370	235	30	195	420	565	405	400
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1885	1885	1885
Adj Flow Rate, veh/h	216	753	26	316	389	0	32	205	442	595	426	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	1	1	1
Cap, veh/h	255	666	297	334	825		331	348	590	597	482	
Arrive On Green	0.14	0.19	0.19	0.19	0.23	0.00	0.19	0.19	0.19	0.26	0.26	0.00
Sat Flow, veh/h	1795	3582	1598	1795	3676	0	1781	1870	1585	2334	1885	1598
Grp Volume(v), veh/h	216	753	26	316	389	0	32	205	442	595	426	0
Grp Sat Flow(s),veh/h/ln	1795	1791	1598	1795	1791	0	1781	1870	1585	1167	1885	1598
Q Serve(g_s), s	10.1	16.0	1.2	15.0	8.1	0.0	1.3	8.6	4.9	21.9	18.7	0.0
Cycle Q Clear(g_c), s	10.1	16.0	1.2	15.0	8.1	0.0	1.3	8.6	4.9	21.9	18.7	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	255	666	297	334	825		331	348	590	597	482	
V/C Ratio(X)	0.85	1.13	0.09	0.95	0.47		0.10	0.59	0.75	1.00	0.88	
Avail Cap(c_a), veh/h	313	666	297	334	825		331	348	590	597	482	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.68	0.68	0.68	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.0	35.0	29.0	34.6	28.6	0.0	29.0	32.0	23.5	32.0	30.8	0.0
Incr Delay (d2), s/veh	11.8	71.5	0.4	35.3	1.9	0.0	0.6	7.1	8.5	35.9	17.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.2	13.5	0.5	9.7	3.6	0.0	0.6	4.6	8.9	8.9	10.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	47.8	106.5	29.4	69.8	30.5	0.0	29.6	39.1	32.0	67.9	48.1	0.0
LnGrp LOS	D	F	С	E	С		С	D	С	E	D	
Approach Vol, veh/h		995			705	А		679			1021	A
Approach Delay, s/veh		91.8			48.1			34.0			59.6	
Approach LOS		F			D			С			E	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		20.0	20.0	20.0		26.0	16.2	23.8				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		16.0	16.0	16.0		22.0	15.0	17.0				
Max Q Clear Time (g_c+I1), s		10.6	17.0	18.0		23.9	12.1	10.1				
Green Ext Time (p_c), s		1.5	0.0	0.0		0.0	0.2	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			61.5									
HCM 6th LOS			Е									

Notes

Unsignalized Delay for [WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

MOVEMENT SUMMARY V Site: 2 [Projected 2024 Without Project (Site Folder: General)]

Kingswood Dr at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU	UT MES	DEM/ FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	95% BA QUI	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	ft		Itale	Cycles	mph
South	n: NB Li	ittlerock F	٦d											
3u	U	30	1.0	32	1.0	0.684	13.1	LOS B	6.9	174.2	0.55	0.52	0.55	36.8
8	T1	645	1.0	694	1.0	0.684	5.1	LOS A	6.9	174.2	0.55	0.52	0.55	35.9
18	R2	150	1.0	161	1.0	0.684	5.1	LOS A	6.9	174.2	0.55	0.52	0.55	34.9
Appro	bach	825	1.0	887	1.0	0.684	5.4	LOS A	6.9	174.2	0.55	0.52	0.55	35.7
East: WB Kingswood Dr			Dr											
1u	U	5	1.0	5	1.0	0.250	15.2	LOS B	1.8	45.6	0.77	0.79	0.77	33.7
1	L2	225	1.0	242	1.0	0.250	12.9	LOS B	1.8	45.6	0.77	0.79	0.77	33.0
16	R2	110	1.0	118	1.0	0.071	4.3	LOS A	0.0	0.0	0.00	0.49	0.00	36.5
Appro	bach	340	1.0	366	1.0	0.250	10.1	LOS B	1.8	45.6	0.52	0.70	0.52	34.0
North	: SB Lit	ttlerock R	ld											
7u	U	10	1.0	11	1.0	0.126	13.4	LOS B	0.6	16.2	0.46	0.68	0.46	34.4
7	L2	100	1.0	108	1.0	0.126	11.0	LOS B	0.6	16.2	0.46	0.68	0.46	33.6
4	T1	635	1.0	683	1.0	0.493	5.3	LOS A	3.9	97.2	0.58	0.52	0.58	35.8
Appro	bach	745	1.0	801	1.0	0.493	6.2	LOS A	3.9	97.2	0.56	0.54	0.56	35.5
All Ve	hicles	1910	1.0	2054	1.0	0.684	6.5	LOS A	6.9	174.2	0.55	0.56	0.55	35.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Tuesday, December 6, 2022 3:58:51 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Kingswood at Littlerock.sip9

W Site: 4 [Projected 2024 without project (Site Folder: General)]

Odegard Rd at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU	UT IMES HV 1	DEM/ FLO	AND WS HV 1	Deg. Satn	Aver. Delay	Level of Service	95% B/ QUI	ACK OF EUE Dist 1	Prop. Que	Effective Stop Rate	Aver. No.	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	ft		Tato	Cycles	mph
South	n: NB Li	ittlerock F	٦d											
3u	U	5	1.0	5	1.0	0.631	12.4	LOS B	5.9	149.9	0.31	0.41	0.31	37.6
8	T1	795	1.0	855	1.0	0.631	4.4	LOS A	5.9	149.9	0.31	0.41	0.31	36.7
18	R2	10	1.0	11	1.0	0.631	4.4	LOS A	5.9	149.9	0.31	0.41	0.31	35.7
Appro	bach	810	1.0	871	1.0	0.631	4.5	LOS A	5.9	149.9	0.31	0.41	0.31	36.7
East:	East: WB Odegard Rd													
1u	U	1	1.0	1	1.0	0.022	12.0	LOS B	0.0	0.0	0.00	0.64	0.00	36.4
1	L2	25	1.0	27	1.0	0.022	9.6	LOS A	0.0	0.0	0.00	0.64	0.00	35.6
16	R2	10	1.0	11	1.0	0.022	4.0	LOS A	0.0	0.0	0.00	0.64	0.00	34.6
Appro	bach	36	1.0	39	1.0	0.022	8.1	LOS A	0.0	0.0	0.00	0.64	0.00	35.3
North	: SB Li	ttlerock R	Rd											
7u	U	5	1.0	5	1.0	0.688	12.3	LOS B	7.0	176.5	0.26	0.40	0.26	37.7
7	L2	40	1.0	43	1.0	0.688	10.0	LOS A	7.0	176.5	0.26	0.40	0.26	36.8
4	T1	850	1.0	914	1.0	0.688	4.4	LOS A	7.0	176.5	0.26	0.40	0.26	36.8
Appro	bach	895	1.0	962	1.0	0.688	4.7	LOS A	7.0	176.5	0.26	0.40	0.26	36.8
All Ve	hicles	1741	1.0	1872	1.0	0.688	4.6	LOS A	7.0	176.5	0.28	0.41	0.28	36.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Tuesday, December 6, 2022 3:47:48 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Odegard at Littlerock.sip9

MOVEMENT SUMMARY V Site: 1 [Projected 2024 Without Project (Site Folder: General)]

PM Peak Hour Israel Rd at Littlerock Rd Site Category: (None) Roundabout

Vehi	ehicle Movement Performance													
Mov	Turn	INP	UT	DEM	AND	Deg.	Aver.	Level of	95% BA	ACK OF	Prop. E	Effective	Aver.	Aver.
ID				FLO Totol	WS	Satn	Delay	Service		=UE Dict 1	Que	Stop	No.	Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		veh	ft		Nale	Cycles	mph
South	n: NB Li	ittlerock I	Rd											
3	L2	205	1.0	216	1.0	0.688	14.8	LOS B	7.3	185.2	0.80	0.89	0.99	33.8
8	T1	395	1.0	416	1.0	0.688	9.4	LOS A	7.3	185.2	0.80	0.89	0.99	33.9
18	R2	70	1.0	74	1.0	0.688	9.4	LOS A	7.3	185.2	0.80	0.89	0.99	32.9
Appro	bach	670	1.0	705	1.0	0.688	11.0	LOS B	7.3	185.2	0.80	0.89	0.99	33.8
East:	WB Isr	ael Rd												
1	L2	95	1.0	100	1.0	0.319	13.3	LOS B	2.5	64.1	0.85	0.80	0.85	34.0
6	T1	180	1.0	189	1.0	0.319	7.9	LOS A	2.5	64.1	0.85	0.80	0.85	34.1
16	R2	305	1.0	321	1.0	0.284	6.2	LOS A	2.0	51.0	0.69	0.69	0.69	35.1
Appro	bach	580	1.0	611	1.0	0.319	7.9	LOS A	2.5	64.1	0.77	0.74	0.77	34.6
North	: SB Li	ttlerock F	۶d											
7	L2	190	1.0	200	1.0	0.385	12.4	LOS B	2.6	65.1	0.70	0.77	0.70	33.9
4	T1	410	1.0	432	1.0	0.385	7.0	LOS A	2.8	70.1	0.69	0.71	0.69	34.8
14	R2	165	1.0	174	1.0	0.385	6.7	LOS A	2.8	70.1	0.69	0.67	0.69	34.3
Appro	bach	765	1.0	805	1.0	0.385	8.3	LOS A	2.8	70.1	0.69	0.72	0.69	34.4
West	EB 70	th Ave												
5	L2	120	1.0	126	1.0	0.245	11.4	LOS B	1.2	29.0	0.59	0.73	0.59	34.5
2	T1	105	1.0	111	1.0	0.245	6.3	LOS A	1.2	29.0	0.59	0.73	0.59	34.4
12	R2	170	1.0	179	1.0	0.166	5.5	LOS A	0.7	17.6	0.48	0.64	0.48	35.3
Appro	bach	395	1.0	416	1.0	0.245	7.5	LOS A	1.2	29.0	0.54	0.69	0.54	34.8
All Ve	hicles	2410	1.0	2537	1.0	0.688	8.8	LOS A	7.3	185.2	0.72	0.77	0.77	34.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Tuesday, December 6, 2022 3:40:37 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Israel at Littlerock.sip9

Lanes, Volumes, Timings 1: Littlerock Rd/2nd Ave & Trosper Rd

	٦	-	\mathbf{F}	•	-	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲ ۲			ľ	et îk		ľ	•	1	<u>ک</u>	tβ	
Traffic Volume (vph)	55	315	200	370	385	60	220	270	520	115	300	30
Future Volume (vph)	55	315	200	370	385	60	220	270	520	115	300	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	150		0	250		0	150		250
Storage Lanes	1		0	1		0	1		1	2		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			30			25	
Link Distance (ft)		528			484			673			312	
Travel Time (s)		14.4			13.2			15.3			8.5	
Turn Type	Split	NA		Split	NA		Prot	NA	pm+ov	Prot	NA	
Protected Phases	4	4		8	8		5	2	8	1	6	
Permitted Phases									2			
Detector Phase	4	4		8	8		5	2	8	1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	35.6	35.6		33.6	33.6		24.5	30.6	33.6	8.6	31.6	
Total Split (s)	36.0	36.0		37.0	37.0		29.0	42.0	37.0	20.0	33.0	
Total Split (%)	26.7%	26.7%		27.4%	27.4%		21.5%	31.1%	27.4%	14.8%	24.4%	
Maximum Green (s)	31.4	31.4		32.4	32.4		24.4	37.4	32.4	15.4	28.4	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6	3.6	3.6	3.6	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.6	4.6	4.6	4.6	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	2.5	2.5		3.0	3.0		3.0	2.5	3.0	3.0	2.5	
Recall Mode	None	None		C-Max	C-Max		None	None	C-Max	None	None	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	
Flash Dont Walk (s)	25.0	25.0		23.0	23.0			20.0	23.0		21.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0		0	
Intersection Summary												
Area Type:	Other											
Cycle Length: 135												
Actuated Cycle Length: 13	5											
Offset: 46 (34%), Referenc	ed to phase	8:WBTL,	Start of (Green								
Natural Cycle: 130												

Control Type: Actuated-Coordinated

Splits and Phases: 1: Littlerock Rd/2nd Ave & Trosper Rd

Ø1	Ø2	A ₀₄	🛛 🕶 🖉 Ø8 (R)	
20 s	42 s	36 s	37 s	
Ø 5	↓ Ø6			
29 s	33 s			

Littlerock Road Mixed Use SCJ Alliance

	۶	-	\mathbf{r}	4	-	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	≜1 }-		٦	đ þ		٦	†	1	٦	A	
Traffic Volume (veh/h)	55	315	200	370	385	60	220	270	520	115	300	30
Future Volume (veh/h)	55	315	200	370	385	60	220	270	520	115	300	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	59	339	215	292	562	65	237	290	559	124	323	32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	474	560	348	431	796	92	263	521	824	149	700	69
Arrive On Green	0.26	0.26	0.26	0.24	0.24	0.24	0.15	0.28	0.28	0.08	0.21	0.21
Sat Flow, veh/h	1795	2120	1318	1795	3318	383	1795	1885	1592	1795	3292	324
Grp Volume(v), veh/h	59	285	269	292	319	308	237	290	559	124	175	180
Grp Sat Flow(s),veh/h/ln	1795	1791	1646	1795	1885	1815	1795	1885	1592	1795	1791	1825
Q Serve(g_s), s	3.4	18.8	19.4	19.9	20.9	21.0	17.5	17.8	35.3	9.2	11.5	11.7
Cycle Q Clear(g_c), s	3.4	18.8	19.4	19.9	20.9	21.0	17.5	17.8	35.3	9.2	11.5	11.7
Prop In Lane	1.00		0.80	1.00		0.21	1.00		1.00	1.00		0.18
Lane Grp Cap(c), veh/h	474	473	435	431	452	436	263	521	824	149	381	388
V/C Ratio(X)	0.12	0.60	0.62	0.68	0.70	0.71	0.90	0.56	0.68	0.83	0.46	0.46
Avail Cap(c_a), veh/h	474	473	435	431	452	436	325	522	825	205	381	388
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.67	0.67	0.67	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.8	43.5	43.7	46.6	46.9	47.0	56.6	41.7	24.3	61.0	46.4	46.4
Incr Delay (d2), s/veh	0.1	1.9	2.4	5.7	6.1	6.4	23.3	1.1	2.1	18.6	0.6	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.5	8.7	8.3	9.7	10.7	10.4	9.7	8.5	19.8	5.0	5.3	5.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	37.9	45.4	46.0	52.2	53.0	53.4	79.9	42.8	26.4	79.6	47.0	47.1
LnGrp LOS	D	D	D	D	D	D	E	D	С	E	D	<u> </u>
Approach Vol, veh/h		613			919			1086			479	
Approach Delay, s/veh		44.9			52.9			42.5			55.5	
Approach LOS		D			D			D			E	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	15.8	41.9		40.3	24.4	33.3		37.0				
Change Period (Y+Rc), s	4.6	4.6		4.6	4.6	4.6		4.6				
Max Green Setting (Gmax), s	15.4	37.4		31.4	24.4	28.4		32.4				
Max Q Clear Time (g_c+I1), s	11.2	37.3		21.4	19.5	13.7		23.0				
Green Ext Time (p_c), s	0.1	0.0		2.3	0.3	1.5		3.5				
Intersection Summary												
HCM 6th Ctrl Delay			48.0									
HCM 6th LOS			D									

Notes

User approved volume balancing among the lanes for turning movement.

Lanes, Volumes, Timings 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

	٦	-	$\mathbf{\hat{v}}$	4	+	•	•	Ť	1	5	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u>††</u>	1	ľ	A		ľ	•	1	ካካ	†	1
Traffic Volume (vph)	205	725	25	300	375	235	30	195	420	565	405	415
Future Volume (vph)	205	725	25	300	375	235	30	195	420	565	405	415
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		150	350		0	100		0	0		0
Storage Lanes	1		1	1		0	1		1	2		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		25			25			25			30	
Link Distance (ft)		484			643			746			574	
Travel Time (s)		13.2			17.5			20.3			13.0	
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	pt+ov	Split	NA	Perm
Protected Phases	7	4		3	8		2	2	23	6	6	
Permitted Phases			4									6
Detector Phase	7	4	4	3	8		2	2	23	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	20.0	20.0	20.0		20.0	20.0		20.0	20.0	20.0
Total Split (s)	19.0	20.0	20.0	20.0	21.0		20.0	20.0		26.0	26.0	26.0
Total Split (%)	22.1%	23.3%	23.3%	23.3%	24.4%		23.3%	23.3%		30.2%	30.2%	30.2%
Maximum Green (s)	15.0	16.0	16.0	16.0	17.0		16.0	16.0		22.0	22.0	22.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		0.0	0.0		0.0	0.0	0.0
Venicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max		Max	Max		None	None	None
Walk Time (s)		5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)		11.0	11.0	11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/nr)		0	0	0	0		0	0		0	0	0
Intersection Summary												
Area Type:	Other											
Cycle Length: 86												
Actuated Cycle Length: 86												
Offset: 38 (44%), Reference	ced to phase	e 4:EBT a	nd 8:WB	r, Start o	f Green							
Natural Cycle: 90												
Control Type: Actuated-Coordinated												

Splits and Phases: 2: Tyee Dr/SB I-5 Ramps & Trosper Rd

↓ _{Ø2}	Ø6	₩Ø4 (R)	6 03
20 s	26 s	20 s	20 s
			< Ø8 (R)
		19 s	21 s

	≯	-	\mathbf{r}	•	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	<u></u>	1	ľ	∱1 ≱		ľ	•	1	ኘኘ	•	1
Traffic Volume (veh/h)	205	725	25	300	375	235	30	195	420	565	405	415
Future Volume (veh/h)	205	725	25	300	375	235	30	195	420	565	405	415
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1870	1870	1870	1885	1885	1885
Adj Flow Rate, veh/h	216	763	26	316	395	0	32	205	442	595	426	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	2	2	2	1	1	1
Cap, veh/h	255	666	297	334	825		331	348	590	597	482	
Arrive On Green	0.14	0.19	0.19	0.19	0.23	0.00	0.19	0.19	0.19	0.26	0.26	0.00
Sat Flow, veh/h	1795	3582	1598	1795	3676	0	1781	1870	1585	2334	1885	1598
Grp Volume(v), veh/h	216	763	26	316	395	0	32	205	442	595	426	0
Grp Sat Flow(s),veh/h/ln	1795	1791	1598	1795	1791	0	1781	1870	1585	1167	1885	1598
Q Serve(q_s), s	10.1	16.0	1.2	15.0	8.2	0.0	1.3	8.6	4.9	21.9	18.7	0.0
Cycle Q Clear(q_c), s	10.1	16.0	1.2	15.0	8.2	0.0	1.3	8.6	4.9	21.9	18.7	0.0
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	255	666	297	334	825		331	348	590	597	482	
V/C Ratio(X)	0.85	1.14	0.09	0.95	0.48		0.10	0.59	0.75	1.00	0.88	
Avail Cap(c_a), veh/h	313	666	297	334	825		331	348	590	597	482	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.68	0.68	0.68	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.0	35.0	29.0	34.6	28.6	0.0	29.0	32.0	23.5	32.0	30.8	0.0
Incr Delay (d2), s/veh	11.8	77.5	0.4	35.3	2.0	0.0	0.6	7.1	8.5	35.9	17.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.2	14.0	0.5	9.7	3.7	0.0	0.6	4.6	8.9	8.9	10.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	47.8	112.5	29.4	69.8	30.6	0.0	29.6	39.1	32.0	67.9	48.1	0.0
LnGrp LOS	D	F	С	E	С		С	D	С	E	D	
Approach Vol, veh/h		1005			711	А		679			1021	A
Approach Delay, s/veh		96.4			48.1			34.0			59.6	
Approach LOS		F			D			С			E	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		20.0	20.0	20.0		26.0	16.2	23.8				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		16.0	16.0	16.0		22.0	15.0	17.0				
Max Q Clear Time (g_c+I1), s		10.6	17.0	18.0		23.9	12.1	10.2				
Green Ext Time (p_c), s		1.5	0.0	0.0		0.0	0.2	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			63.0									
HCM 6th LOS			E									

Notes

Unsignalized Delay for [WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Site: 2 [Projected 2024 With Project (Site Folder: General)]

Kingswood Dr at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU	UT IMES	DEM/ FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	95% BA QUI	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		veh	ft		Nale	Cycles	mph
South	n: NB L	ittlerock I	٦d											
3u	U	50	1.0	54	1.0	0.718	13.2	LOS B	7.8	196.4	0.58	0.53	0.58	36.6
8	T1	665	1.0	715	1.0	0.718	5.2	LOS A	7.8	196.4	0.58	0.53	0.58	35.7
18	R2	150	1.0	161	1.0	0.718	5.2	LOS A	7.8	196.4	0.58	0.53	0.58	34.7
Appro	bach	865	1.0	930	1.0	0.718	5.7	LOS A	7.8	196.4	0.58	0.53	0.58	35.6
East:	East: WB Kingswood Dr													
1u	U	5	1.0	5	1.0	0.263	15.6	LOS B	2.0	49.9	0.81	0.81	0.81	33.6
1	L2	225	1.0	242	1.0	0.263	13.3	LOS B	2.0	49.9	0.81	0.81	0.81	32.9
16	R2	110	1.0	118	1.0	0.071	4.3	LOS A	0.0	0.0	0.00	0.49	0.00	36.5
Appro	bach	340	1.0	366	1.0	0.263	10.4	LOS B	2.0	49.9	0.55	0.71	0.55	34.0
North	: SB Li	ttlerock F	۲d											
7u	U	10	1.0	11	1.0	0.128	13.5	LOS B	0.7	16.4	0.47	0.69	0.47	34.3
7	L2	100	1.0	108	1.0	0.128	11.1	LOS B	0.7	16.4	0.47	0.69	0.47	33.6
4	T1	665	1.0	715	1.0	0.523	5.4	LOS A	4.2	105.9	0.61	0.53	0.61	35.7
Appro	bach	775	1.0	833	1.0	0.523	6.3	LOS A	4.2	105.9	0.59	0.56	0.59	35.4
All Ve	ehicles	1980	1.0	2129	1.0	0.718	6.7	LOS A	7.8	196.4	0.58	0.57	0.58	35.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Wednesday, June 14, 2023 3:50:30 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Kingswood at Littlerock.sip9

Site: 4 [Projected 2024 with project (Site Folder: General)]

Odegard Rd at Littlerock Rd PM Peak Hour Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfor	mance										
Mov ID	Turn	INP VOLU	UT IMES	DEM/ FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	95% B/ QU	ACK OF	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[lotal veh/h	HV J %	[Iotal veh/h	HV J %	v/c	sec		[Veh. veh	Dist J ft		Rate	Cycles	mph
South	n: NB L	ittlerock I	٦d											
3u	U	5	1.0	5	1.0	0.654	12.6	LOS B	6.4	161.4	0.37	0.42	0.37	37.4
8	T1	815	1.0	876	1.0	0.654	4.6	LOS A	6.4	161.4	0.37	0.42	0.37	36.5
18	R2	10	1.0	11	1.0	0.654	4.6	LOS A	6.4	161.4	0.37	0.42	0.37	35.5
Appro	bach	830	1.0	892	1.0	0.654	4.7	LOS A	6.4	161.4	0.37	0.42	0.37	36.5
East:	East: WB Odegard Rd													
1u	U	1	1.0	1	1.0	0.022	12.0	LOS B	0.0	0.0	0.00	0.64	0.00	36.4
1	L2	25	1.0	27	1.0	0.022	9.6	LOS A	0.0	0.0	0.00	0.64	0.00	35.6
16	R2	10	1.0	11	1.0	0.022	4.0	LOS A	0.0	0.0	0.00	0.64	0.00	34.6
Appro	bach	36	1.0	39	1.0	0.022	8.1	LOS A	0.0	0.0	0.00	0.64	0.00	35.3
North	: SB Li	ttlerock F	۲d											
7u	U	20	1.0	22	1.0	0.711	12.3	LOS B	7.7	194.7	0.28	0.41	0.28	37.6
7	L2	40	1.0	43	1.0	0.711	10.0	LOS A	7.7	194.7	0.28	0.41	0.28	36.7
4	T1	865	1.0	930	1.0	0.711	4.4	LOS A	7.7	194.7	0.28	0.41	0.28	36.7
Appro	bach	925	1.0	995	1.0	0.711	4.8	LOS A	7.7	194.7	0.28	0.41	0.28	36.7
All Ve	hicles	1791	1.0	1926	1.0	0.711	4.8	LOS A	7.7	194.7	0.32	0.42	0.32	36.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Wednesday, June 14, 2023 3:51:26 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Odegard at Littlerock.sip9

Site: 1 [Projected 2024 With Project (Site Folder: General)]

PM Peak Hour Israel Rd at Littlerock Rd Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov	Turn	INP		DEM	AND	Deg.	Aver.	Level of	95% B/	ACK OF	Prop. E	Effective	Aver.	Aver.
ID		VOLU		FLO [Total	WS LIVI	Satn	Delay	Service	QU [\/ob	EUE Diet 1	Que	Stop	NO.	Speed
		veh/h	۱۱۷ J %	veh/h	%	v/c	sec		veh	ft		Nate	Cycles	mph
South: NB Littlerock Rd														
3	L2	205	1.0	216	1.0	0.704	15.2	LOS B	7.8	197.8	0.82	0.91	1.04	33.6
8	T1	405	1.0	426	1.0	0.704	9.8	LOS A	7.8	197.8	0.82	0.91	1.04	33.7
18	R2	70	1.0	74	1.0	0.704	9.8	LOS A	7.8	197.8	0.82	0.91	1.04	32.7
Appro	bach	680	1.0	716	1.0	0.704	11.5	LOS B	7.8	197.8	0.82	0.91	1.04	33.5
East: WB Israel Rd														
1	L2	95	1.0	100	1.0	0.324	13.4	LOS B	2.6	66.0	0.87	0.81	0.87	34.0
6	T1	180	1.0	189	1.0	0.324	8.0	LOS A	2.6	66.0	0.87	0.81	0.87	34.0
16	R2	315	1.0	332	1.0	0.297	6.3	LOS A	2.2	54.2	0.71	0.70	0.71	35.0
Appro	bach	590	1.0	621	1.0	0.324	8.0	LOS A	2.6	66.0	0.78	0.75	0.78	34.5
North	: SB Lit	ttlerock F	Rd											
7	L2	200	1.0	211	1.0	0.393	12.5	LOS B	2.7	66.9	0.71	0.77	0.71	33.9
4	T1	415	1.0	437	1.0	0.393	7.1	LOS A	2.9	72.0	0.70	0.71	0.70	34.7
14	R2	165	1.0	174	1.0	0.393	6.8	LOS A	2.9	72.0	0.69	0.67	0.69	34.2
Appro	bach	780	1.0	821	1.0	0.393	8.4	LOS A	2.9	72.0	0.70	0.72	0.70	34.4
West	EB 70	th Ave												
5	L2	120	1.0	126	1.0	0.247	11.4	LOS B	1.2	29.4	0.60	0.73	0.60	34.4
2	T1	105	1.0	111	1.0	0.247	6.3	LOS A	1.2	29.4	0.60	0.73	0.60	34.4
12	R2	170	1.0	179	1.0	0.167	5.5	LOS A	0.7	17.7	0.48	0.64	0.48	35.3
Appro	bach	395	1.0	416	1.0	0.247	7.5	LOS A	1.2	29.4	0.55	0.69	0.55	34.8
All Ve	hicles	2445	1.0	2574	1.0	0.704	9.0	LOS A	7.8	197.8	0.73	0.78	0.79	34.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Wednesday, June 14, 2023 3:49:16 PM

Project: N:\Projects\5275 JSA Civil, LLC\22-000200 Littlerock Road Apartments\Phase 02 - Traffic Impact Analysis\2 - Analysis\Sidra\Israel at Littlerock.sip9

Intersection

Int Delay, s/veh

Int Delay, s/veh	0.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		•	el el		
Traffic Vol, veh/h	0	40	0	860	880	55	
Future Vol, veh/h	0	40	0	860	880	55	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	43	0	935	957	60	

Major/Minor	Minor2	Ν	/lajor1	Ma	jor2					
Conflicting Flow All	-	987	-	0	-	0				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Critical Hdwy	-	6.22	-	-	-	-				
Critical Hdwy Stg 1	-	-	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	-	-				
Follow-up Hdwy	-	3.318	-	-	-	-				
Pot Cap-1 Maneuver	0	300	0	-	-	-				
Stage 1	0	-	0	-	-	-				
Stage 2	0	-	0	-	-	-				
Platoon blocked, %				-	-	-				
Mov Cap-1 Maneuve	r -	300	-	-	-	-				
Mov Cap-2 Maneuve	r -	-	-	-	-	-				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				

Approach	EB	NB	SB
HCM Control Delay, s	19	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBT EBLn ²	SBT	SBR
Capacity (veh/h)	- 300) -	-
HCM Lane V/C Ratio	- 0.145) -	-
HCM Control Delay (s)	- 19) -	-
HCM Lane LOS	- (; -	-
HCM 95th %tile Q(veh)	- 0.5	; ; -	-

Consulting, LLC

July 12, 2022

Mike Drennon Kaufman Construction & Development, Inc. 7908 Sweet Iron Court SE Tumwater WA 98501

RE: Olympia Pocket Gopher Mound Survey Results for 5945 Littlerock Rd SW in Tumwater, WA

Dear Mr. Drennon,

Krippner Consulting, LLC conducted a habitat assessment and surveys for Olympia pocket gopher mounds for a development project at 5945 Littlerock Rd SW in June and July this year. This project site is approximately 8 acres in size and includes parcels 12703211600 and 12703220700. It is located west of Interstate 5 and southwest of the Littlerock Rd SW and Kingswood Dr SW roundabout in the City of Tumwater, Washington (Figures 1 and 2).

The project site is located within the range of the Olympia subspecies of Mazama pocket gopher. The Olympia pocket gopher is listed as a state and federal threatened species. Therefore, City of Tumwater requires that surveys be conducted for this species in suitable habitat areas to comply with Tumwater Municipal Code (TMC). Olympia pocket gophers are also protected in accordance with the federal Endangered Species Act (ESA).

Study Methods

This study included two field surveys, 30 days apart in accordance with 2018 USFWS guidance for conducting gopher mound surveys, to search for gopher mounds and assess habitat conditions. Linda Krippner and Steve Krippner conducted the habitat assessment and a gopher mound survey on June 1, 2022, and Linda Krippner, Steve Krippner, and Leilani Tuinukuafe conducted another gopher mound survey on the site on July 6, 2022. The site was mowed shortly after the first survey in June to ensure optimal survey conditions in July. Approximate locations of the survey tracks are shown in Figure 2. Dense shrub and forest areas in perimeter areas of the site were not surveyed for gopher mounds because these areas do not provide suitable habitat for the Olympia pocket gopher.

Study Results

This site is located beneath a major Bonneville Power Administration (BPA) powerline corridor. Most of this site has been cleared and graded in recent years and the north and east portions of the site have been used for parking vehicles for the past 20 years. Soils on the east portion of the site are covered with imported gravel (Photo 1). Buildings are also present on the site (Photo 2). The mapped soil type is Nisqually loamy fine sand, 0 to 3% slopes, a preferred soil type for the Olympia pocket gopher.

Photo 1. View west of the southeast portion of the site where soils are compacted and covered by gravel (June 1, 2022).

Photo 2. View east of the east portion of the site (July 6, 2022).

Vegetation in surveyed areas includes a mix of non-native grasses and forbs including red fescue, orchard grass, reed canarygrass, sweet vernal grass, oxeye daisy, sheep sorrel, dandelion, hairy cat's ear, white clover, common vetch, black medic, and chickweed (Photo 3). Bracken fern is also present.

Photo 3. Grassland vegetation beneath the powerlines on the west portion of the site (June 1, 2022).

No gopher mounds were observed during the June or July surveys. Mole mounds were observed on the site, mostly in perimeter areas. Soils in most areas of the site appear to be too compacted or disturbed by past dumping or staging of rip rap and other rock-based materials to provide habitat for gophers.

Thank you for the opportunity to conduct this study and prepare this letter report for you. Please call me if you have any questions regarding this study.

Sincerely,

Linda Krijann

Linda Krippner Krippner Consulting, LLC

Site Name and Parcel # How were the data collected? (circle the method for each)	Parcel #: 12703211600 and 12703220700 Project #: TUM-22-0189 Site/Landowner: MCS-Littlerock LLC Transect: Trimble Garmin Aerial Mounds Trimble Garmin Aerial Notes: Transect data was collected using GAIA GPS on an iPhone.
Field Team Personnel:	Name: Linda Krippner
(Indicate all staff present, CIRCLE who filled out form)	Name: Steve Krippner Name: Leilani Tuinukuafe (July 6 only)
Others onsite (name/affiliation)	
Site visit # (CIRCLE all that apply)	1 st and 2 nd Unable to screen Notes:
Do onsite conditions preclude the need for further visits?	Yes No Dense woody cover that encompasses the entire site (trees/shrubs) that appears to preclude any potential MPG use. Impervious Compacted Graveled Flooded Other Notes:
Describe visibility for mound detection:	Poor Fair Good Notes: Vegetation was mowed shortly after the survey on June 1 to ensure good survey conditions on July 6. Survey conditions on June 1 were adequate for finding mounds.
Request mowing? ((CIRCLE and DESCRIBE WHERE MOWING IS NEEDED and SHOW ON AERIAL PHOTO	Yes No N/A Notes: See above for mow timing between the surveys. All grass- dominated areas on the site were mowed.

Mounds observed over the whole site are characteristic of:	MPG Mounds	Likely MPG Mounds	Indeterminate	Likely Mole Mounds	Mole Mounds		
Quantify or describe amount of each type and approx. # of mounds Group = 3 mounds or more					Mole mounds were only found in a few spots, mainly in perimeter		
		de (circle)			areas.		
	No IVIPG moun	ds (circle)					
MPG mounds in GPS?	None All	Most Sor	me				
(CIRCLE and DESCRIBE)	Notes:						
If MPG mounds present, entered in GPS?	Yes No	N/A					
Does woody vegetation onsite match aerial photo?	Yes No - describe differences and show on parcel map/aerial:						
What portion(s) of the property was screened?	Vhat portion(s) of the property All Part - describe and show on parcel map/aerial: vas screened? Part - describe and show on parcel map/aerial:						
(CIRCLE and DESCRIBE)	All areas	s vegetated by gra	sses and forbs, se	e Figure 2.			
Notes -	Describe, and s	show on parcel i	map/aerial if ap	plicable:			
Team reviewed and agreed to data recorded on form?	Yes No Notes:	Reviewed	by initials: <u>SK</u>				
(CIRCLE, and EXPLAIN if "No")							

2022 Thurston County Critical Areas Ordinance (CAO) Prairie Screening Data Sheet

	Parcel Number: 12703211600 a	nd 12703220700	CAO prairie criteria met	Yes or No	
	Property Owner: MCS-Littlerock	LLC	Mima mounds present	Yes or No	
	Surveyor(s): Linda Krippner and Ste	eve Krippner and Leilani Tuinukuafe	Oaks (Quercus garryana) present	Yes or No	
	Date: June 1 and July 6, 2022	(July 6 only)	— Mature	:	
	Composition of Vegetation	 Most of the site has grassla density varies with very gra 	nd vegetation. Vegetation velly, compacted areas being Sapling	:	
	eeposition of vegetation.	more sparsely vegetated.	Seedling	:	
	T	Clear & (similar) None of the	arget species were observed on this site		
Х	Larget species				
	Apocynum unurosuennjonum Balsamorhiza deltoidea	Dresent / Absent	Lupinus unicuuns	1 2 3 4 5 N/A	
	Pistorta histortoidas	Prosent / Absent		1 2 2 4 5 N/A	
	Distorta Distortolaes		Alignmenthos integrifelia (Coniferencia)	LZ345 N/A	
	Broalaea coronaria	12345 N/A	iviicrantnes integrifolia (Saxifraga I.)	Present / Absent	
	Camassia leichtlinii	12345 N/A	iviicranthes oregana (Saxifraga o.)	12345 N/A	
	<u>Camassia quamash</u>	Present / Absent	Microseris laciniata	Present / Absent	
	Carex densa	Present / Absent	Perideridia gairdneri	12345 N/A	
	Carex feta	12345 N/A	Plagiobothrys figuratus	12345 N/A	
	Carex inops ssp. inops	12345 N/A	<u>Plectritis congesta</u>	Present / Absent	
	Carex tumulicola	12345 N/A	Polemonium carneum	Present / Absent	
	Carex unilateralis	12345 N/A	<u>Potentilla gracillis</u>	Present / Absent	
	Castilleja hispida	12345 N/A	Ranunculus alismifolius	12345 N/A	
	Castilleja levisecta	Present / Absent	Ranunculus occidentalis	Present / Absent	
	Danthonia californica	12345 N/A	Ranunculus orthorhynchus	12345 N/A	
	Delphinium menziesii	12345 N/A	Sericocarpus rigidus	Present / Absent	
	Delphinium nuttallii	12345 N/A	Sidalcea malviflora var. virgata	Present / Absent	
	Deschampsia cespitosa	12345 N/A	Silene scouleri	Present / Absent	
	Deschampsia danthonioides	12345 N/A	Sisyrinchium idahoense	12345 N/A	
	Dodecatheon hendersonii	12345 N/A	Solidago missouriensis	12345 N/A	
	Downingia yina	12345 N/A	Solidago simplex (S. spathulata)	12345 N/A	
	Erigeron speciosus	12345 N/A	Toxicoscordion venenosum var.	12345 N/A	
		2	venenosum (Zigadenus venenosus)		
	Eriophyllum lanatum	Cover:m ⁻ N/A	Trijolium willdenowii (T. tridentatum)	12345 N/A	
	Eryngium petiolatum	Present / Absent	Triteleia grandiflora	12345 N/A	
	Festuca roemeri (F. idahoensis)	12345 N/A	Triteleia hyacinthina	12345 N/A	
	Fragaria virginiana	Cover: m ² N/A	Veratrum californicum	12345 N/A	
	Fritillaria affinis	12345 N/A	Veratrum viride	12345 N/A	
	Hieracium scouleri	12345 N/A	Viola adunca	12345 N/A	
	Hosackia pinnata (Lotus pinnatus)	Present / Absent	Viola praemorsa var. nuttallii	12345 N/A	
	Koeleria macrantha (K. cristata)	12345 N/A			
	Leptosiphon bicolor (Linanthus b.)	12345 N/A	*Species Count Class: Prairie Plant Mai	nual:	
	Lomatium bradshawii	Present / Absent	1 = < 25 <u>https://www.thu</u>	urstoncountywa.gov/	
	Lomatium nudicaule	12345 N/A	2 = 25 - 49 3 = 50 - 74 planning/plannir	ngdocuments/cao-	
	Lomatium triternatum	12345 N/A	4 = 75 - 100 prairie-plant-ma	nual-4.23.2018.pdf	
	<u>Lomatium utriculatum</u>	Present / Absent	5 = >100		

Non-CAO vegetation

Sp	pecies or codons (i.e. "HYPRAD" for Hype	ochae	eris radicata) Notes
			Vegetation in surveyed areas on this site.
1	Cytisus scoparius	16	Lathyrus sp.
2	Hypochaeris radicata	17	Acer macrophyllum
3	Daucus carota	18	Dactylis glomerata
4	Anthoxanthum odoradum	19	Plantago lanceolata
5	Rubus bifrons	20	Festuca rubra
6	Agrostis sp.	21	Medicago lupulina
7	Rumex acetosella	22	Navarettia squarosa
8	Pseudotsuga menziesii	23	Mysotis discolor
9	Lupinus bicolor	24	Trifolium repens
10	Phalaris arundinacea	25	Taraxacum officinale
11	Cirsium arvense	26	Vicia sativa
12	Fallopia bohemica	27	Trifolium arvense
13	Pteridium aquilinum	28	Parentucellia viscosa
14	Stellaria media	29	Tanacetum vulgare
15	Capsella bursa-pastoris		

Prairie Habitat Criteria: If at any point at least three target species, totaling in general at least 25 plants each are encountered within about 5 meters of each other (WDFW 2015), the area in question meets the criteria to be established as occurrence of prairie. For certain plants such as WNHP rare plants (indicated here in bold), or species which serves as nectar or host plants for both TCB and either SCC or SGCN butterflies (indicated here with underline), presence is enough to meet prairie habitat criteria for such species, even if their count is less than 25 individual plants. CAO wet and dry prairie plant lists can be found in Tables 24.25-7 and 24.25-8, respectively. More info available at: https://www.thurstoncountywa.gov/planning/Pages/hcp-prairie-review.aspx

Allyson Brooks Ph.D., Director State Historic Preservation Officer

January 3, 2023

Alex Baruch Associate Planner City of Tumwater

In future correspondence please refer to: Project Tracking Code: 2022-02-01129 Property: City of Tumwater Development South of Union/Cavalry Cemetery Re: Archaeology - Concur with Survey; Follow Avoidance and Monitoring Plan

Dear Alex Baruch:

The State Historic Preservation Officer (SHPO) and the Department of Archaeology and Historic Preservation (DAHP) has been provided with documentation regarding the above referenced project. In response, we concur with the results and recommendations made in the survey report. Specifically, we agree with the following recommendations as outlined on page 50 of the report entitled "Cultural Resource Assessment for the 5945 Littlerock Road SW Development Project, Tumwater, Thurston County, Washington":

- The Historic Property Inventory (HPI) forms provided for the historic-aged structures located on the property have been reviewed and have been determined NOT Eligible for the National Register of Historic Places. Therefore, no further oversight is needed prior to demolition.
- We agree that GPR Grids 1, 2, 3, 12, and 14 should be avoided by the project. If they cannot be avoided, then the anomalies tentatively identified as human burials would require further archaeological evaluation prior to ground disturbing activities.
- We agree that archaeological monitoring should be undertaken for ground disturbance in:
 - GPR Grids 8, 9, 10, and 11, and;
 - Any ground disturbance within 50 feet of the existing cemetery fence line.
- All other work areas should follow a standard Inadvertent Discovery Plan, such as the one provided in Appendix A of the survey report.

Please note that the recommendations provided in this letter reflect only the opinions of DAHP. Any interested Tribes may have different recommendations. We appreciate receiving copies of any correspondence or comments from Tribes or other parties concerning cultural resource issues that you receive.

These comments are based on the information available at the time of this review and on behalf of the SHPO pursuant to Washington State law. Please note that should the project scope of work and/or location change significantly, please contact DAHP for further review.

Thank you for the opportunity to review and comment. Please ensure that the DAHP Project Number (a.k.a. Project Tracking Code) is attached to any future communications about this project. Should you have any questions, please feel free to contact me.

Sincerely,

stutte

Stephanie Jolivette Local Governments Archaeologist (360) 628-2755 Stephanie.Jolivette@dahp.wa.gov

